Occupational exposure to asbestos is associated with severe lung diseases (e.i. mesothelioma). Despite banned in EU, the first symptoms tend to appear 40 years after the first exposure and the incidence peak of asbestos-related disease is expected in these years. Man-Mad Vitreous Fibers (MMVF), i.g. rock wool, have largely replaced asbestos since its ban. The large variability of these products makes their classification with respect to toxicity quite controversial. The aim of this PhD work is to shed light on some possible early- and long-term cytotoxic pathways asbestos-related, optimizing methodologies and experimental workflows that may be applied also to MMVFs, in order to predict their risks. For the study of early-term cytotoxic effects, we focused on fiber- cell membrane interaction. The effect of asbestos at the cell membrane level is still unclear because of the lack of suitable cell models. The aim was to compare the effects of the short-term exposure to different type of fibers using oocytes of Xenopus leavis by the two-electrode voltage clamp technique. Our results show that Crocidolite (Croc) asbestos altered the cell membrane's passive properties, by stimulating the activity of TMEM16A Ca2+-activated Cl- channels endogenously present in the Xenopus oocyte membrane. It is known that TMEM16A is also expressed in human cells and its overexpression is correlated with tumor proliferation. In the presence of Cytochalasin D (CyTD) (an inhibitor of actin polymerization), Croc potentiated its action, suggesting the involvement of membrane-cytoskeleton interaction. Oocytes exposure to rock wool (FAV173) also altered the oocytes membrane passive properties, partially mimicking the Croc effect but at a concentration 10 times higher. The results suggest that both types of fiber stimulate the TMEM16A channel activity, but the higher iron content of Croc asbestos fibers seems to be responsible for the morphological modification of the cell membrane observed in the presence of CyTD. The TMEM16A protein could thus represent an important pharmacological tool, to discriminate mechanisms through which different types of fibers may initiate the interaction with cell membranes. Instead, for long-term cytotoxic effects, we focused on the study of protein-fibers interaction thought a biophysical perspective with different techniques. The ability of asbestos fibers to load cytoplasmic proteins is well known. Nevertheless, how this event can trigger cellular cytotoxicity is still under study. We hypothesized that the loaded proteins may undergo structural rearrangements that impair their functionality and overall contribute to cellular inflammation. To verify this hypothesis, we assembled a system model made of Chry and Apoferritin (ApoF, iron-free) or Holoferritin (HoloF, rich in iron), called adduct. Micro-FTIR spectroscopic studies undoubtedly prove that the interaction with Chry fibers induces more severe structural modification of Ferritin when the protein is iron-depleted: ApoF peptide backbone adopts a misfolded conformation, richer in β-strands and HoloF exhibits a more stationary behavior. HR-TEM studies confirm that HoloF maintains also its iron core upon loading, while ApoF lies onto the fiber in a very thin layer. The absence of the iron core could be the cause of the faster misfolding of ApoF with respect to HoloF, determining the reduction of its iron storage capacity due to the loss of its native structure. Despite unloaded ApoF maintains its enzymatic activity, the substantial fraction of ApoF loaded onto the fiber and the oxidase activity of Chry fibers contribute to the intracellular impairment of the iron homeostasis, resulting in ROS production. In this light, MMVFs may be analyzed with the same methodologies developed in order to predict their risks and the onset of vitreous fiber-related diseases.

L’esposizione all’amianto è associata a malattie polmonari, p.e. mesotelioma. Nonostante il divieto, i primi sintomi tendono a comparire 40 anni dopo la prima esposizione e il picco di incidenza delle malattie asbesto correlate è atteso in questi anni. Le fibre vetrose artificiali (MMVF), considerate meno dannose, hanno largamente sostituto l’asbesto nei suoi impieghi. La grande variabilità di MMVF rende la loro classificazione tossicologica molto controversa. L’obbiettivo di questa tesi è far luce sui possibili meccanismi di citotossicità a breve e lungo termine correlati all’asbesto, ottimizzando metodologie e procedure sperimentali che possano essere applicate anche a MMVF, al fine di predirne i rischi e prevenire l’insorgenza di patologie ad esse correlate. Per lo studio degli effetti citotossici a breve termine, ci siamo concentrati sull'interazione delle fibre con la membrana cellulare. L’effetto dell’amianto a livello della membrana cellulare non è ancora ben chiaro a causa della mancanza di modelli adeguati. Dato che l’ovocita di Xenopus è stato proposto come modello per rilevare i cambiamenti elettrici della membrana indotti dall’esposizione all’amianto. Sfruttando gli ovociti, abbiamo confrontato gli effetti dell'esposizione a breve termine di diverse fibre, utilizzando la tecnica del voltage clamp. I risultati mostrano che l'amianto Crocidolite (Croc) altera le proprietà passive della membrana cellulare, stimolando l'attività dei canali TMEM16A presenti nella membrana dell'ovocita di Xenopus. È noto che TMEM16A è espresso anche nelle cellule umane e la sua sovraespressione è correlata alla proliferazione tumorale. In presenza di citocalasina D (CyTD) (un inibitore della polimerizzazione dell'actina), Croc potenzia la sua azione, suggerendo un’interazione con il citoscheletro. L'esposizione degli ovociti a MMVF altera le proprietà passive della membrana degli ovociti, imitando parzialmente gli effetti Croc. I risultati suggeriscono che entrambi i tipi di fibra stimolano l’attività del canale TMEM16A, ma il maggiore contenuto di ferro di Croc sembra essere responsabile della variazione morfologica della membrana osservata in presenza di CyTD. Queste evidenze dimostrano che TMEM16A potrebbe quindi rappresentare un importante strumento farmacologico, per discriminare i meccanismi con i quali diverse fibre possono avviare l'interazione con le membrane. Invece, per gli effetti citotossici a lungo termine, ci siamo concentrati sullo studio dell'interazione proteina-fibra da un punto di vista biofisico. La capacità dell’amianto di caricare le proteine è nota. Tuttavia, il modo in cui questo evento può innescare la citotossicità è ancora in fase di studio. Abbiamo ipotizzato che le proteine caricate possano subire riarrangiamenti strutturali che ne compromettono la funzionalità e contribuiscono all'infiammazione cellulare. Per verificare questa ipotesi, abbiamo assemblato un modello (addotto) composto da Crisotilo (Chry) e Apoferritina (ApoF, senza ferro) o Oloferritina (HoloF, ricco di ferro). Studi spettroscopici di micro-FTIR dimostrano indubbiamente che Chry induce una modifica strutturale più importante (misfolding) in ApoF che risulta essere più ricca di β-foglietti rispetto alla forma nativa. Invece, HoloF mostra un comportamento più stazionario. Gli studi TEM confermano che HoloF mantiene il nucleo di ferro durante il caricamento, mentre ApoF si deposita sulla fibra formando uno strato sottile. L'assenza del nucleo di ferro potrebbe causare un misfolding più rapido di ApoF rispetto a HoloF, determinando una riduzione nell’immagazzinare ferro. Suggerendo che, nonostante, l’ApoF mantenga l’attività enzimatica, la frazione di proteina caricata sulla fibra e l’attività ossidasica del Chry contribuiscono al danno dell’omeostasi del ferro portando a stress cellulare.

Il ruolo svolto dall’interazione proteina-fibra di amianto nella tossicità dell’amianto: un approccio multi-tecnica dalla singola fibra all’ambiente cellulare / Zangari, Martina. - (2024 Feb 09).

Il ruolo svolto dall’interazione proteina-fibra di amianto nella tossicità dell’amianto: un approccio multi-tecnica dalla singola fibra all’ambiente cellulare.

ZANGARI, MARTINA
2024-02-09

Abstract

Occupational exposure to asbestos is associated with severe lung diseases (e.i. mesothelioma). Despite banned in EU, the first symptoms tend to appear 40 years after the first exposure and the incidence peak of asbestos-related disease is expected in these years. Man-Mad Vitreous Fibers (MMVF), i.g. rock wool, have largely replaced asbestos since its ban. The large variability of these products makes their classification with respect to toxicity quite controversial. The aim of this PhD work is to shed light on some possible early- and long-term cytotoxic pathways asbestos-related, optimizing methodologies and experimental workflows that may be applied also to MMVFs, in order to predict their risks. For the study of early-term cytotoxic effects, we focused on fiber- cell membrane interaction. The effect of asbestos at the cell membrane level is still unclear because of the lack of suitable cell models. The aim was to compare the effects of the short-term exposure to different type of fibers using oocytes of Xenopus leavis by the two-electrode voltage clamp technique. Our results show that Crocidolite (Croc) asbestos altered the cell membrane's passive properties, by stimulating the activity of TMEM16A Ca2+-activated Cl- channels endogenously present in the Xenopus oocyte membrane. It is known that TMEM16A is also expressed in human cells and its overexpression is correlated with tumor proliferation. In the presence of Cytochalasin D (CyTD) (an inhibitor of actin polymerization), Croc potentiated its action, suggesting the involvement of membrane-cytoskeleton interaction. Oocytes exposure to rock wool (FAV173) also altered the oocytes membrane passive properties, partially mimicking the Croc effect but at a concentration 10 times higher. The results suggest that both types of fiber stimulate the TMEM16A channel activity, but the higher iron content of Croc asbestos fibers seems to be responsible for the morphological modification of the cell membrane observed in the presence of CyTD. The TMEM16A protein could thus represent an important pharmacological tool, to discriminate mechanisms through which different types of fibers may initiate the interaction with cell membranes. Instead, for long-term cytotoxic effects, we focused on the study of protein-fibers interaction thought a biophysical perspective with different techniques. The ability of asbestos fibers to load cytoplasmic proteins is well known. Nevertheless, how this event can trigger cellular cytotoxicity is still under study. We hypothesized that the loaded proteins may undergo structural rearrangements that impair their functionality and overall contribute to cellular inflammation. To verify this hypothesis, we assembled a system model made of Chry and Apoferritin (ApoF, iron-free) or Holoferritin (HoloF, rich in iron), called adduct. Micro-FTIR spectroscopic studies undoubtedly prove that the interaction with Chry fibers induces more severe structural modification of Ferritin when the protein is iron-depleted: ApoF peptide backbone adopts a misfolded conformation, richer in β-strands and HoloF exhibits a more stationary behavior. HR-TEM studies confirm that HoloF maintains also its iron core upon loading, while ApoF lies onto the fiber in a very thin layer. The absence of the iron core could be the cause of the faster misfolding of ApoF with respect to HoloF, determining the reduction of its iron storage capacity due to the loss of its native structure. Despite unloaded ApoF maintains its enzymatic activity, the substantial fraction of ApoF loaded onto the fiber and the oxidase activity of Chry fibers contribute to the intracellular impairment of the iron homeostasis, resulting in ROS production. In this light, MMVFs may be analyzed with the same methodologies developed in order to predict their risks and the onset of vitreous fiber-related diseases.
9-feb-2024
36
2022/2023
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
PhDThesis_MartinaZangari2024.pdf

embargo fino al 09/02/2025

Descrizione: PhDThesis_MartinaZangari2024
Tipologia: Tesi di dottorato
Dimensione 31.59 MB
Formato Adobe PDF
31.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3069225
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact