In this Thesis, we aim to investigate the origin of neutron capture elements by studying their evolution in time and space in the interstellar medium (ISM) of galaxies of different morphological types. The study of the chemical evolution of galaxies is performed by means of detailed chemical evolution models that predict the evolution of 40 chemical species, from H to Fe and the neutron capture elements Y, Zr, Ba, La, Ce, Eu, Mo, Nd and Pr. The adopted models include gas infall and outflow as well as the chemical enrichment from low-intermediate mass stars, novae, supernovae of all types (including MR-SNe) and MNS. In the first part of the Thesis, we compute rates of MNS in external galaxies of different morphological types as well as cosmic MNS rates assuming different cosmological scenarios. Our aim is to provide predictions of kilonova rates for future observations both a low and high redshift. We test our models with the observed cosmic stellar mass density and compare our results with the cosmic rate of short gamma-ray bursts. In particular, we find that spiral galaxies are the major contributors to the cosmic MNS rate at all redshifts in hierarchical scenarios while in a pure luminosity evolution scenario spirals are the major contributors locally, whereas ellipticals dominate at high redshift. Then, we focus our study on dwarf galaxies by studying the evolution of the Eu and Ba abundances in Local Group dwarf spheroidal and ultra-faint dwarf galaxies and compare our results with new sets of homogeneous abundances. In this work, we investigate several production scenarios for r-process elements, including both MNS and MR-SNe. Our simulations show that if r-process material is produced only by a quick source, it is possible to reproduce the [Eu/Fe] vs. [Fe/H] observed abundance pattern, but those models fail in reproducing the [Ba/Fe] vs. [Fe/H] one. If r-process elements are produced only with longer delays then the opposite happens. The origin of neutron capture elements is then studied in the Milky Way thin disc, by analysing both their abundance patterns and radial gradients. In particular, we consider r-process nucleosynthesis from MNS, MR-SNe and s-process synthesis from low-intermediate mass stars and rotating massive stars. We also include the processes which mainly influence the formation of abundance gradients: the inside-out scenario and a variable star formation efficiency. We confirm that the [Eu/Fe] vs. [Fe/H] diagram is reproduced by adopting both prompt and delayed sources, with the prompt source dominating the Eu production. Our predicted [Fe/H] gradient slope agrees with observations from Gaia-ESO and other high-resolution spectroscopic surveys. However, the predicted [Eu/H] radial gradient slope is steeper than the observed one, regardless of how quick the production of Eu is. The formation and chemical evolution of the Galactic bulge is also discussed, with a great focus on the stellar metallicity distribution function (MDF). We investigate the possibility that the metal-poor population is formed in situ in a gas-rich environment characterized by violent and fast star formation, while the metal-rich population is made both by stars which formed in situ and by stars which are accreted from the innermost part of the Galactic disc region, being their motions strongly affected by the bar’s gravitational perturbation. In the final part of the Thesis, we present the first of two papers which will be devoted to the study of the evolution of neutron capture elements in early-type galaxies. In the first paper, which is presented in this Thesis, we focus on studying the formation and evolution of elliptical galaxies and how they suppress star formation and maintain it quenched. We show that stellar feedback, in particular from Type Ia SNe, is necessary since it has a main role in maintaining quenched the star formation after the occurrence of the main galactic wind, especially in low-mass ellipticals.

In questo lavoro di tesi abbiamo studiato l’evoluzione nel tempo e nello spazio degli elementi da cattura neutronica nel mezzo interstellare (ISM) di galassie di diverso tipi morfologico. Lo studio dell'evoluzione chimica viene effettuato mediante dettagliati modelli di evoluzione chimica che prevedono l'evoluzione di 40 specie chimiche, dall'idrogeno al ferro e gli elementi Y, Zr, Ba, La, Ce, Eu, Mo, Nd e Pr. I modelli adottati includono infall e outflow di gas, nonché l'arricchimento chimico da parte di stelle di massa bassa e intermedia, novae, supernovae di tutti i tipi (comprese le MR-SNe) e MNS. Nella prima parte della tesi, abbiamo calcolato i tassi di MNS in galassie esterne, nonché i tassi cosmici di MNS assumendo diversi scenari cosmologici. Il nostro obiettivo è fornire previsioni sui tassi di kilonovae sia a basso che ad alto redshift. Abbiamo trovato che le galassie a spirale sono i principali contribuenti al tasso cosmico di MNS a tutti i redshift se si assume un tipico scenario ‘hierarchical’. Il nostro studio si è successivamente focalizzato sulle galassie dwarf, delle quali abbiamo studiato l'evoluzione delle abbondanze di Eu e Ba, confrontando i nostri risultati su un nuovo set di dati osservativi. In questo lavoro, esaminiamo diversi scenari per la produzione degli elementi pesanti, considerando sia le MNS che le MR-SNe. Le nostre simulazioni mostrano che se il materiale del processo r è prodotto solo da una fonte rapida, è possibile riprodurre i dati osservativi dell’ [Eu/Fe] vs. [Fe/H], ma non quelli per il [Ba/Fe] vs. [Fe/H]. Se gli elementi pesanti sono prodotti solo con tempi lunghi, allora accade l'opposto. L'origine degli elementi pesanti è stato poi analizzato nel disco della Via Lattea. Si è considerata la nucleosintesi del processo r- da MNS, MR-SNe e la sintesi del processo s- da stelle di massa bassa e stelle massive rotanti. Nel modello abbiamo incluso inoltre anche gli altri processi che influenzano principalmente la formazione dei gradienti di abbondanza: lo scenario "inside-out" e un'efficienza variabile di formazione stellare. Confermiamo che il diagramma [Eu/Fe] vs. [Fe/H] è riprodotto adottando sia fonti prompt che ritardate, con la fonte prompt che domina la produzione di Eu. Il gradiente [Fe/H] ottenuto è in accordo con le osservazioni mentre l’andamento radiate del gradiente di [Eu/H] è più ripido di quanto osservato, indipendentemente dalla rapidità della produzione di Eu. Abbiamo poi studiato la formazione e l'evoluzione chimica del bulge della nostra Galassia, con attenzione alla funzione di distribuzione delle metallicità stellari (MDF). Abbiamo studiato la possibilità che la popolazione a bassa metallicità del bulge si sia formata in situ in un ambiente ricco di gas caratterizzato da una formazione stellare violenta e rapida, mentre la popolazione a metallicità elevata si sia formata a partire da stelle che sono state accresciute dalla parte più interna della regione del disco galattico, essendo i loro movimenti fortemente influenzati dalla perturbazione gravitazionale della barra. Nella parte finale della tesi, abbiamo presentato il primo di due articoli dedicati allo studio dell'evoluzione degli elementi pesanti nelle galassie ellittiche. Nel primo articolo, che viene presentato in questa tesi, ci siamo concentrati sullo studio della formazione e dell'evoluzione delle galassie ellittiche e su come queste sopprimano la formazione stellare e la mantengano spenta. Abbiamo dimostrato che il feedback stellare, in particolare da parte delle supernovae di tipo Ia, è necessario in quanto svolge un ruolo principale nel mantenere soppressa la formazione stellare dopo l'insorgenza del vento galattico, specialmente nelle galassie ellittiche di bassa massa.

Evoluzione chimica di elementi pesanti in diversi ambienti astrofisici / Molero, Marta. - (2024 Feb 19).

Evoluzione chimica di elementi pesanti in diversi ambienti astrofisici

MOLERO, MARTA
2024-02-19

Abstract

In this Thesis, we aim to investigate the origin of neutron capture elements by studying their evolution in time and space in the interstellar medium (ISM) of galaxies of different morphological types. The study of the chemical evolution of galaxies is performed by means of detailed chemical evolution models that predict the evolution of 40 chemical species, from H to Fe and the neutron capture elements Y, Zr, Ba, La, Ce, Eu, Mo, Nd and Pr. The adopted models include gas infall and outflow as well as the chemical enrichment from low-intermediate mass stars, novae, supernovae of all types (including MR-SNe) and MNS. In the first part of the Thesis, we compute rates of MNS in external galaxies of different morphological types as well as cosmic MNS rates assuming different cosmological scenarios. Our aim is to provide predictions of kilonova rates for future observations both a low and high redshift. We test our models with the observed cosmic stellar mass density and compare our results with the cosmic rate of short gamma-ray bursts. In particular, we find that spiral galaxies are the major contributors to the cosmic MNS rate at all redshifts in hierarchical scenarios while in a pure luminosity evolution scenario spirals are the major contributors locally, whereas ellipticals dominate at high redshift. Then, we focus our study on dwarf galaxies by studying the evolution of the Eu and Ba abundances in Local Group dwarf spheroidal and ultra-faint dwarf galaxies and compare our results with new sets of homogeneous abundances. In this work, we investigate several production scenarios for r-process elements, including both MNS and MR-SNe. Our simulations show that if r-process material is produced only by a quick source, it is possible to reproduce the [Eu/Fe] vs. [Fe/H] observed abundance pattern, but those models fail in reproducing the [Ba/Fe] vs. [Fe/H] one. If r-process elements are produced only with longer delays then the opposite happens. The origin of neutron capture elements is then studied in the Milky Way thin disc, by analysing both their abundance patterns and radial gradients. In particular, we consider r-process nucleosynthesis from MNS, MR-SNe and s-process synthesis from low-intermediate mass stars and rotating massive stars. We also include the processes which mainly influence the formation of abundance gradients: the inside-out scenario and a variable star formation efficiency. We confirm that the [Eu/Fe] vs. [Fe/H] diagram is reproduced by adopting both prompt and delayed sources, with the prompt source dominating the Eu production. Our predicted [Fe/H] gradient slope agrees with observations from Gaia-ESO and other high-resolution spectroscopic surveys. However, the predicted [Eu/H] radial gradient slope is steeper than the observed one, regardless of how quick the production of Eu is. The formation and chemical evolution of the Galactic bulge is also discussed, with a great focus on the stellar metallicity distribution function (MDF). We investigate the possibility that the metal-poor population is formed in situ in a gas-rich environment characterized by violent and fast star formation, while the metal-rich population is made both by stars which formed in situ and by stars which are accreted from the innermost part of the Galactic disc region, being their motions strongly affected by the bar’s gravitational perturbation. In the final part of the Thesis, we present the first of two papers which will be devoted to the study of the evolution of neutron capture elements in early-type galaxies. In the first paper, which is presented in this Thesis, we focus on studying the formation and evolution of elliptical galaxies and how they suppress star formation and maintain it quenched. We show that stellar feedback, in particular from Type Ia SNe, is necessary since it has a main role in maintaining quenched the star formation after the occurrence of the main galactic wind, especially in low-mass ellipticals.
19-feb-2024
MATTEUCCI, MARIA FRANCESCA
36
2022/2023
Settore FIS/05 - Astronomia e Astrofisica
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
Thesis_Molero.pdf

accesso aperto

Descrizione: Tesi finale Molero
Tipologia: Tesi di dottorato
Dimensione 35.52 MB
Formato Adobe PDF
35.52 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3069362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact