The increasing use of bidimensional (2D) nanomaterials in many technological fields needs a careful evaluation of their impact on human health. Skin contact is one of the most relevant exposure routes for 2D nanomaterials. Thus, in the first part, this study was aimed at assessing the applicability of some test guidelines (TGs) defined by the Organization for Economic Cooperation and Development (OECD), originally validated for chemicals, also for 2D nanomaterials, focusing on graphene-based materials (GBMs). Skin irritation and corrosion were assessed following TGs 439 and 431, respectively, using a reconstructed human epidermis model. Both TGs were feasible for testing powdered GBMs without modifications in the protocols. GBMs resulted non-corrosive and non-irritant, unless prepared with toxic agents not adequately removed. Then, skin sensitization potential of GBMs was assessed following three TGs (442C, D, E), evaluating the first three key events of Adverse Outcome Pathway (AOP). TG 442C predicts the first event of skin sensitization AOP, namely the reactivity of a substance with cysteine-rich peptides. Applicability to GBMs appeared hampered by technical limitations and results were not reliable since NMR and HPLC analyses showed ability of GBMs to oxidize cysteine. TG 442D, predicting the second event of skin sensitization AOP (keratinocytes activation), evaluates the activation of specific genes measuring luciferase activity. Its adoption for GBMs was possible only after some modifications in the procedure to avoid unspecific interferences of the materials with readouts. Applying these changes, GBMs induced a low luciferase activity, suggesting a negligible keratinocytes activation. Lastly, TG 442E predicts the third key AOP event (activation of dendritic cells), analyzing the expression of CD54/CD86 differentiation markers though flow cytometry. The adoption of TG 442E to GBMs was possible with care: concentrations range should be chosen basing on dispersion stability of GBMs in culture media. After its adoption, TG 442E showed that GBMs did not induce significant CD54/CD86 expression and, hence, they were unable to activate dendritic cells. According to the “2-out-of-3” defined approach, GBMs can be classified as non-sensitizer. In the second part of the study, cutaneous effects of other 2D nanomaterials were assessed with methods already reported for GBMs. Hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) were firstly tested following TGs 439 and 431, demonstrating that both materials were not irritant or corrosive. Moreover, an in vitro study was performed on HaCaT keratinocytes to investigate the cellular alterations induced by hBN and MoS2 at the epidermal level. Despite hBN and MoS2 were highly internalized by HaCaT cells, they resulted in a good biocompatibility towards keratinocytes after 24 and 72 h exposure. At high concentrations, these materials determined a disruption of plasma membrane integrity associated to a mitochondrial damage, causing a significant reactive oxygen species production. In the last part, this study was extended to abraded and aged (through a photo-chemical process) hBN and hBN-enabled composite. A comparative analysis of the effects induced by the polymeric composite, made of hBN and thermoplastic polyurethane (TPU), its single components and corresponding degraded materials, was performed after short (24 h) and long-term repeated exposure (up to one month). Results demonstrated not only an optimal biocompatibility of these materials, but also that the degradation process did not influence their biocompatibility towards HaCaT cells. Overall, these results suggest that 2D nanomaterials induce only minor and slight toxic effects at the cutaneous level, confirming their good biocompatibility towards the skin.

L’utilizzo crescente dei nanomateriali bidimensionali (2D) in svariati settori tecnologici richiede un’attenta valutazione del loro impatto sulla salute umana. La via di esposizione cutanea può essere ritenuta una fra le più rilevanti per l’uomo. Il presente studio è stato condotto al fine di verificare l’applicabilità di alcune linee guida definite dall’Organizzazione per la Cooperazione e lo Sviluppo Economico (OECD), originariamente validate per le sostanze chimiche, anche per i nanomateriali 2D, scegliendo i materiali a base di grafene (GBMs) come materiali di riferimento. L’irritazione e la corrosione cutanea sono state valutate seguendo le linee guida 439 e 431, usando come modello l’epidermide umana ricostruita. Entrambe si sono rivelate applicabili per i GBMs senza modifiche ai protocolli. I GBMs sono risultati non irritanti e non corrosivi, solo i GBMs sintetizzati con agenti tossici, non opportunamente rimossi, si sono rivelati irritanti. In seguito, la sensibilizzazione cutanea è stata valutata mediante tre linee guida (442C, D e E) che considerano le prime tre fasi della sensibilizzazione cutanea. La linea guida 442C predice il primo evento, ossia la reattività di una sostanza con peptidi ricchi in cisteina. Tale linea guida è risultata non applicabile ai GBMs a causa di limitazioni tecniche. La linea guida 442D predice, invece, l’attivazione dei cheratinociti, il secondo evento della sensibilizzazione cutanea, misurando l’espressione di specifici geni associati alla luciferasi. Tale linea guida è applicabile ai GBMs solo apportando alcune variazioni al protocollo sperimentale per ridurre le interferenze aspecifiche tra i GBMs ed i saggi. Applicando tali adattamenti, i GBMs non sono risultati in grado di attivare i cheratinociti. La linea guida 442E predice l’attivazione delle cellule dendritiche, analizzando l’espressione di marker di differenziamento (CD54/CD86). Anch’essa è risultata applicabile ai GBMs, tuttavia le concentrazioni devono essere scelte in base alla stabilità delle dispersioni dei GBMs nel terreno di coltura. Dopo la sua applicazione, i GBMs non hanno indotto un’espressione significativa di CD54/CD86. Quindi, considerando l’approccio “2 su 3”, i GBMs possono essere definiti non sensibilizzanti a livello cutaneo. Nella seconda parte dello studio, sono stati valutati gli effetti cutanei indotti da altri nanomateriali 2D, il nitruro di boro esagonale (hBN) ed il molibdeno disolfuro (MoS2). Applicando le linee guida 439 e 431, hBN e MoS2 sono risultati non irritanti e non corrosivi. Inoltre, è stato condotto uno studio in vitro su cheratinociti HaCaT per analizzare le alterazioni cellulari indotte da questi materiali a livello epidermico. Nonostante hBN e MoS2 vengano internalizzati dai cheratinociti, tali materiali presentano un basso potenziale citotossico in seguito a 24 e 72 ore di esposizione. In particolare, hBN e MoS2 hanno indotto un’alterazione dell’integrità della membrana plasmatica associata ad un danno mitocondriale, causando un aumento della produzione di specie reattive dell’ossigeno. Infine, tale studio è stato ampliato a materiali abrasi e degradati, focalizzandosi su un composito polimerico (TPU-BN), costituito da hBN e poliuretano termoplastico (TPU). Un’analisi comparativa degli effetti indotti dal composito, dai singoli componenti e dai rispettivi materiali degradati è stata effettuata sulle cellule HaCaT dopo un’esposizione a breve (24 ore) e a lungo temine (fino ad un mese). I risultati hanno dimostrato un’ottima biocompatibilità dei materiali con i cheratinociti e che tale proprietà non viene influenzata dal processo di degradazione, simulato mediante una reazione foto-chimica. Complessivamente, questi risultati hanno evidenziato un effetto tossico estremamente lieve dei nanomateriali 2D, confermando la buona biocompatibilità di tali materiali a livello cutaneo.

Caratterizzazione della tossicità cutanea di nanomateriali bidimensionali / Carlin, Michela. - (2024 Mar 01).

Caratterizzazione della tossicità cutanea di nanomateriali bidimensionali

CARLIN, MICHELA
2024-03-01

Abstract

The increasing use of bidimensional (2D) nanomaterials in many technological fields needs a careful evaluation of their impact on human health. Skin contact is one of the most relevant exposure routes for 2D nanomaterials. Thus, in the first part, this study was aimed at assessing the applicability of some test guidelines (TGs) defined by the Organization for Economic Cooperation and Development (OECD), originally validated for chemicals, also for 2D nanomaterials, focusing on graphene-based materials (GBMs). Skin irritation and corrosion were assessed following TGs 439 and 431, respectively, using a reconstructed human epidermis model. Both TGs were feasible for testing powdered GBMs without modifications in the protocols. GBMs resulted non-corrosive and non-irritant, unless prepared with toxic agents not adequately removed. Then, skin sensitization potential of GBMs was assessed following three TGs (442C, D, E), evaluating the first three key events of Adverse Outcome Pathway (AOP). TG 442C predicts the first event of skin sensitization AOP, namely the reactivity of a substance with cysteine-rich peptides. Applicability to GBMs appeared hampered by technical limitations and results were not reliable since NMR and HPLC analyses showed ability of GBMs to oxidize cysteine. TG 442D, predicting the second event of skin sensitization AOP (keratinocytes activation), evaluates the activation of specific genes measuring luciferase activity. Its adoption for GBMs was possible only after some modifications in the procedure to avoid unspecific interferences of the materials with readouts. Applying these changes, GBMs induced a low luciferase activity, suggesting a negligible keratinocytes activation. Lastly, TG 442E predicts the third key AOP event (activation of dendritic cells), analyzing the expression of CD54/CD86 differentiation markers though flow cytometry. The adoption of TG 442E to GBMs was possible with care: concentrations range should be chosen basing on dispersion stability of GBMs in culture media. After its adoption, TG 442E showed that GBMs did not induce significant CD54/CD86 expression and, hence, they were unable to activate dendritic cells. According to the “2-out-of-3” defined approach, GBMs can be classified as non-sensitizer. In the second part of the study, cutaneous effects of other 2D nanomaterials were assessed with methods already reported for GBMs. Hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) were firstly tested following TGs 439 and 431, demonstrating that both materials were not irritant or corrosive. Moreover, an in vitro study was performed on HaCaT keratinocytes to investigate the cellular alterations induced by hBN and MoS2 at the epidermal level. Despite hBN and MoS2 were highly internalized by HaCaT cells, they resulted in a good biocompatibility towards keratinocytes after 24 and 72 h exposure. At high concentrations, these materials determined a disruption of plasma membrane integrity associated to a mitochondrial damage, causing a significant reactive oxygen species production. In the last part, this study was extended to abraded and aged (through a photo-chemical process) hBN and hBN-enabled composite. A comparative analysis of the effects induced by the polymeric composite, made of hBN and thermoplastic polyurethane (TPU), its single components and corresponding degraded materials, was performed after short (24 h) and long-term repeated exposure (up to one month). Results demonstrated not only an optimal biocompatibility of these materials, but also that the degradation process did not influence their biocompatibility towards HaCaT cells. Overall, these results suggest that 2D nanomaterials induce only minor and slight toxic effects at the cutaneous level, confirming their good biocompatibility towards the skin.
1-mar-2024
TUBARO, AURELIA
36
2022/2023
Settore BIO/14 - Farmacologia
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
TESI PhD CARLIN Finale.pdf

embargo fino al 01/03/2025

Descrizione: TESI PhD CARLIN Finale
Tipologia: Tesi di dottorato
Dimensione 9.78 MB
Formato Adobe PDF
9.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3070238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact