The atmospheric CO2, primarily caused by combustion of fossil fuels, cement production and land use changes, is being absorbed by the ocean at faster rate since the beginning of the industrial era. This phenomenon, known as ocean acidification (OA), is considered one of the main threat for the marine communities. Among global environmental changes, OA is causing both direct and indirect effects to the marine life, and one of the main challenges for scientists, managers, and policy-makers is understanding how the ecosystems will respond to these changes, considering the ‘winners’ and the ‘losers’ species in their entirety. In this context, shallow CO2 vents provide potential analogues of forecasted acidified ocean and represent a great opportunity to understand the responses of species and communities long-term exposed to low pH conditions. Vents are locally acidified environments that are used worldwide as natural laboratories to test acidification effects not only on single species, but also on whole communities, evaluating indirect effects on ecosystems. Primary producers, such as seagrass meadows, may take advantage from the higher seawater CO2 levels. In particular, the foundation species Posidonia oceanica has a key importance for the Mediterranean Sea, for all the ecosystem services that it supports. Under naturally acidified conditions (i.e., shallow volcanic CO2 vents), P. oceanica increases its habitat complexity but lower the abundance of epiphytic calcareous species (e.g., coralline algae). Among the epiphytes that live associated with P. oceanica leaves, a relevant ecological role is covered by benthic diatoms. Benthic diatoms represent key organisms riding through primary and secondary biofilm formation, playing important roles in determining the structure and the dynamic of the overlying benthic communities. For this reason, they represent important elements in the determination of colonization patterns. Here, the current PhD research aimed to assess the effect of high pCO2 / low pH conditions on the structural and functional organization of benthic diatoms assemblages in a Mediterranean shallow CO₂ vent. First, by reviewing the available literature, we summarize the present knowledge about the impacts of OA on the early colonisation stages and the succession of benthic communities over time (Chapter 1). Then we collected epiphytic diatoms through ad-hoc developed low adhesive sampling panels capable of selecting mainly the early colonization stages. Thus, we were able to reconstruct the benthic diatoms assemblages belonging to different pH conditions (acidified versus control sites) thanks to the morphological identification base on the analyses of frustule ultra-structures on Scanning Electron Microscope (SEM) images (Chapter 2). Exploiting the collected samples, we also isolated, selected and cultured new axenic monoclonal benthic diatoms. Special attention was paid to the identification through a polyphasic approach (molecular and morphological) of a well-established model diatom isolated: Cocconeis neothumensis var. marina (Chapter 3). In this view, my research work focused on the possible effect of OA on the selection of diatom strains with a special attention on the growth and the metabolism of the two strains cultured (see Chapter 4). Finally, we tested the effect of OA on the plant-animal chemical relationships. In particular, the benthic diatoms of the genus Cocconeis, dominating benthic communities associated with P. oceanica, are known for the production of apoptogenic compounds influencing the early sex reversal of the decapod Hippolyte inermis. To this purpose, we approached this issue by exploring the responses of H. inermis to different food source. In particular, we carried out a bioassay experiment supplying to the post-larvae two strains of C. neothumensis isolated both from control and low pH sites (Chapter 5).

Le emissioni di CO2, causate dall’uso dei combustibili fossili, dalla produzione di cemento e dai cambiamenti nell’uso del suolo, vengono assorbite dall’oceano in quantità sempre maggiore dall’inizio dell’era industriale. Questo fenomeno, noto come “acidificazione degli oceani”, è considerato essere una delle principali minacce per la stabilità delle comunità marine. Tra i cambiamenti ambientali globali, l’acidificazione oceanica sta causando effetti diretti e indiretti sul biota marino. Una delle principali sfide per gli scienziati, i gestori e i decisori politici è comprendere come gli ecosistemi risponderanno a questi cambiamenti, considerando sia le specie ‘vincitrici’ che le ‘perdenti’. In questo contesto, i vent di CO2 producono condizioni ecologiche potenzialmente analoghe a quelle dei futuri oceani acidificati e rappresentano una grande opportunità per capire le risposte delle specie e delle comunità esposte a lungo termine a basse condizioni di pH. I vent sono ambienti localmente acidificati e vengono usati in tutto il mondo come laboratori naturali per testare gli effetti dell’acidificazione non solo su singole specie, ma anche su intere comunità, valutando gli effetti indiretti sugli ecosistemi. I produttori primari, come ad esempio le fanerogame, possono essere avvantaggiati dagli elevati livelli di CO2 presente nell’acqua. In particolare, la pianta marina Posidonia oceanica ha un’importanza fondamentale in Mediterraneo, grazie soprattutto ai servizi ecosistemici che svolge. In condizioni naturalmente acidificate (come ad esempio nei vent superficiali di CO2 di origine vulcanica), negli ecosistemi a P. oceanica aumenta la complessità strutturale delle comunità associate, ma diminuisce l’abbondanza delle specie epifite calcaree (ad esempio le alghe Corallinaceae). Tra gli epifiti che vivono associati alle foglie di P. oceanica, un ruolo ecologico rilevante è svolto dalle diatomee bentoniche. Le diatomee bentoniche rappresentano organismi chiave attraverso la formazione di biofilm primari e secondari, giocando un ruolo importante nel determinare la struttura e la dinamica delle comunità bentoniche successive. Per questa ragione, le diatomee bentoniche rappresentano importanti elementi nella determinazione dei pattern di colonizzazione. La presente ricerca di dottorato ha mirato alla valutazione degli effetti delle condizioni di alta pCO2/basso pH sull’organizzazione strutturale e funzionale delle comunità associate di diatomee bentoniche in un vent superficiale di CO2 in Mediterraneo. Per prima cosa, analizzando la letteratura disponibile, abbiamo riassunto le conoscenze attuali in merito agli impatti dell’acidificazione sugli stadi di colonizzazione primari e la successione di comunità bentoniche nel tempo. Successivamente sono state raccolte le diatomee epifitiche attraverso pannelli di campionamento a bassa adesione costruiti per selezionare principalmente gli stadi di colonizzazione primari. Da questi campioni è stato possibile risalire alle associazioni di diatomee bentoniche appartenenti a diverse condizioni di pH (siti acidificati versus siti a pH normale), grazie all’identificazione morfologica basata sull’analisi delle immagini dell’ultra-struttura del frustulo al Microscopio Elettronico a Scansione. Sfruttando i campioni ottenuti, abbiamo anche isolato, selezionato e coltivato nuove diatomee bentoniche monoclonali axeniche. Un’attenzione particolare è stata posta sull’identificazione, ottenuta mediante un approccio polifasico (molecolare e morfologico) di una diatomea “modello” isolata: Cocconeis neothumensis var. marina. La mia ricerca si è focalizzata sui possibili effetti dell’acidificazione oceanica sulla selezione di ceppi di diatomee, con particolare attenzione alla crescita e al metabolismo dei due ceppi coltivati. Per concludere, abbiamo testato gli effetti dell’acidificazione sulle relazioni chimiche pianta-animale.

Comunità di diatomee associate a praterie di fanerogame: effetti dell'acidificazione degli oceani sulla prima colonizzazione e relazioni chimiche pianta-animale / Somma, Emanuele. - (2024 Mar 01).

Comunità di diatomee associate a praterie di fanerogame: effetti dell'acidificazione degli oceani sulla prima colonizzazione e relazioni chimiche pianta-animale

SOMMA, EMANUELE
2024-03-01

Abstract

The atmospheric CO2, primarily caused by combustion of fossil fuels, cement production and land use changes, is being absorbed by the ocean at faster rate since the beginning of the industrial era. This phenomenon, known as ocean acidification (OA), is considered one of the main threat for the marine communities. Among global environmental changes, OA is causing both direct and indirect effects to the marine life, and one of the main challenges for scientists, managers, and policy-makers is understanding how the ecosystems will respond to these changes, considering the ‘winners’ and the ‘losers’ species in their entirety. In this context, shallow CO2 vents provide potential analogues of forecasted acidified ocean and represent a great opportunity to understand the responses of species and communities long-term exposed to low pH conditions. Vents are locally acidified environments that are used worldwide as natural laboratories to test acidification effects not only on single species, but also on whole communities, evaluating indirect effects on ecosystems. Primary producers, such as seagrass meadows, may take advantage from the higher seawater CO2 levels. In particular, the foundation species Posidonia oceanica has a key importance for the Mediterranean Sea, for all the ecosystem services that it supports. Under naturally acidified conditions (i.e., shallow volcanic CO2 vents), P. oceanica increases its habitat complexity but lower the abundance of epiphytic calcareous species (e.g., coralline algae). Among the epiphytes that live associated with P. oceanica leaves, a relevant ecological role is covered by benthic diatoms. Benthic diatoms represent key organisms riding through primary and secondary biofilm formation, playing important roles in determining the structure and the dynamic of the overlying benthic communities. For this reason, they represent important elements in the determination of colonization patterns. Here, the current PhD research aimed to assess the effect of high pCO2 / low pH conditions on the structural and functional organization of benthic diatoms assemblages in a Mediterranean shallow CO₂ vent. First, by reviewing the available literature, we summarize the present knowledge about the impacts of OA on the early colonisation stages and the succession of benthic communities over time (Chapter 1). Then we collected epiphytic diatoms through ad-hoc developed low adhesive sampling panels capable of selecting mainly the early colonization stages. Thus, we were able to reconstruct the benthic diatoms assemblages belonging to different pH conditions (acidified versus control sites) thanks to the morphological identification base on the analyses of frustule ultra-structures on Scanning Electron Microscope (SEM) images (Chapter 2). Exploiting the collected samples, we also isolated, selected and cultured new axenic monoclonal benthic diatoms. Special attention was paid to the identification through a polyphasic approach (molecular and morphological) of a well-established model diatom isolated: Cocconeis neothumensis var. marina (Chapter 3). In this view, my research work focused on the possible effect of OA on the selection of diatom strains with a special attention on the growth and the metabolism of the two strains cultured (see Chapter 4). Finally, we tested the effect of OA on the plant-animal chemical relationships. In particular, the benthic diatoms of the genus Cocconeis, dominating benthic communities associated with P. oceanica, are known for the production of apoptogenic compounds influencing the early sex reversal of the decapod Hippolyte inermis. To this purpose, we approached this issue by exploring the responses of H. inermis to different food source. In particular, we carried out a bioassay experiment supplying to the post-larvae two strains of C. neothumensis isolated both from control and low pH sites (Chapter 5).
1-mar-2024
TERLIZZI, ANTONIO
36
2022/2023
Settore BIO/07 - Ecologia
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
Somma_PhD Thesis.pdf

accesso aperto

Descrizione: Tesi di Dottorato Emanuele Somma
Tipologia: Tesi di dottorato
Dimensione 8.85 MB
Formato Adobe PDF
8.85 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3070246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact