Plasma membranes represent the crucial structural component of eucaryotic cells, serving as a selectively permeable barrier that separates the internal environment of the cell from the external surroundings. Over the last two decades, the vision of a homogenous fluid mosaic model gave the space to a more complex model of description, which sees the compartmentalization of lipids and proteins in functional and specialized subdomains, also called lipid rafts. They are described as dynamic regions, whose composition and lateral organization constantly change in response to cellular stimuli. In particular, they are believed to play central functions in cellular signaling, protein mobilization, and membrane trafficking. Moreover, diverse endocytosis mechanisms have been discovered, and some of these are thought to be regulated by lipid rafts, including the internalization of membrane pathogens such as viruses, cargo molecules targeting and delivery, as well as extracellular vesicles uptake. Focusing on extracellular vesicles, they have been described as nanometer-sized vesicles (∼30 − 2000 nm), and recently proposed as important mediators of intercellular communication between all cells of our body. A particular sub-class of extracellular vesicles, also known as small extracellular vesicles (∼ 30 − 150), have attracted interest as a suitable drug delivery systems, displaying a composition that reflects their cells of origin, and a small size that makes them able to cross biological barriers through the body. These two features, combined with their high biocompatibility and specific targeting, make them primarily involved in the regulation of pathophysiological processes, such as cancer progression, metastasis formation, and cell proliferation. However, a clear knowledge of the sEVs functioning and their roles in biological systems, as well as the mechanisms that regulate their selective interaction with recipient cells, is still missing and fundamental for therapeutic usage. However, given the complexity of cell membranes, and the small size of sEVs, along with the development of new tools for investigating plasma membrane dynamics and sEVs interaction processes, the exploration and formulation of biomimetic cell membrane systems have been gaining great interest for investigating various cellular processes (e.g. biomolecules interaction, lipids redistribution). Based on these considerations, a biophysical approach that focuses on the development of a model system mimicking lipid rafts subdomains is here proposed, followed by its application for analysis of small extracellular vesicles uptake mechanisms. The protocol showed the possibility of using atomic force microscopy to study the dynamics of sEVs fusion mechanisms, providing spatial and time-resolved information about lipid rafts morphological changes upon vesicles fusion. More in detail, the system has been applied to sEVs from a cellular model of a metastatic cell line, the triple-negative breast cancer cells, interacting with a range of synthetic planar lipid bilayers displaying lipid phase separation with different cholesterol amount and degree of fluidity, designed to mimic the formation of ‘raft’-like nanodomains in cell membranes. Using time-resolved AFM under temperature control, it has been possible to show the strong dependence of sEVs uptake, and the associated local membrane composition and membrane fluidity. The strongest interaction and sEVs mixing with the lipid bilayer has been observed over the less fluid regions, with sEVs even able to disrupt ordered domains at sufficiently high cholesterol concentration. The obtained results highlighted the possibility of using the developed model system to investigate, from a biophysical perspective, the mechanisms regulating sEVs uptake, suggesting that tuning the plasma membrane characteristics might be instrumental to regulating sEVs uptake for EVs-based drug delivery applications.

Le membrane plasmatiche rappresentano il componente strutturale delle cellule eucariotiche, agendo da barriera selettivamente permeabile che separa l'ambiente interno della cellula dall'ambiente esterno. Negli ultimi due decenni, la visione di un modello omogeneo di mosaico fluido ha lasciato spazio a un modello di descrizione più complesso, che vede la compartimentazione di lipidi e proteine in domini funzionali e specializzati, anche chiamati "raft lipidici". Questi sono descritti come regioni dinamiche la cui composizione e organizzazione laterale cambiano costantemente in risposta agli stimoli cellulari. In particolare, si ritiene che essi svolgano funzioni centrali nella segnalazione cellulare, nella mobilizzazione delle proteine e nel traffico delle membrane. Inoltre, sono stati scoperti diversi meccanismi di endocitosi, e si ritiene che alcuni di essi siano regolati dai raft lipidici, compresa l'internalizzazione di agenti patogeni delle membrane come i virus, trasporto di biomolecole, nonché l'assorbimento di vescicole extracellulari. Concentrandosi sulle vescicole extracellulari, queste sono state descritte come vescicole di dimensioni nanometriche (∼ 30 − 150), proposte come mediatori della comunicazione intercellulare tra tutte le cellule del nostro corpo, ha suscitato interesse come possibile sistema idoneo per il trasporto di farmaci. La loro capacità di raggiungere il sito di interesse con una elevata specificità, le rendono coinvolte nella regolazione di processi patologici, come la progressione del cancro, la formazione di metastasi e la proliferazione cellulare. Tuttavia, manca ancora una chiara comprensione del loro funzionamento e dei loro ruoli nei sistemi biologici, così come dei meccanismi che regolano la loro interazione selettiva con le cellule riceventi. Data la complessità delle membrane cellulari e le piccole dimensioni delle sEV, insieme allo sviluppo di nuovi strumenti per l'indagine della dinamica delle membrane plasmatiche e dei processi di interazione delle sEV, l'esplorazione e la formulazione di sistemi biomimetici di membrane cellulari stanno suscitando grande interesse per l'indagine di vari processi cellulari (ad esempio, l'interazione di biomolecole e la redistribuzione dei lipidi). In base a queste considerazioni, si propone qui un sistema modello che mimi i domini dei "raft lipidici", seguito dalla sua applicazione per l'analisi dei meccanismi di assorbimento delle vescicole extracellulari. Il protocollo ha dimostrato la possibilità di utilizzare la microscopia a forza atomica per studiare la dinamica dei meccanismi di fusione delle sEVs, fornendo informazioni spaziali (alla nanoscala) e temporali (nell’arco di decine di secondi) sui cambiamenti morfologici dei "raft lipidici" durante la fusione delle vescicole, superando così i limiti delle attuali tecniche usate per eseguire questi studi. Il sistema è stato applicato alle sEVs da un modello cellulare di una linea cellulare metastatica, le cellule del cancro al seno triplo-negativo, interagendo con una serie di bilayer lipidici sintetici che presentano separazione delle fasi lipidiche con diversa quantità di colesterolo e grado di fluidità. Utilizzando la microscopia a forza atomica risolta nel tempo sotto controllo di temperatura, è stato possibile mostrare la forte dipendenza dell'assorbimento delle sEVs dalla composizione locale della membrana associata, e rispetto alla fluidità della membrana.

Meccanismi di internalizzazione di vescicole extracellulari (sEVs) mediati dalle cellule: ruolo delle proprietà biofisiche della membrana cellulare / Paba, Carolina. - (2024 Mar 13).

Meccanismi di internalizzazione di vescicole extracellulari (sEVs) mediati dalle cellule: ruolo delle proprietà biofisiche della membrana cellulare

PABA, CAROLINA
2024-03-13

Abstract

Plasma membranes represent the crucial structural component of eucaryotic cells, serving as a selectively permeable barrier that separates the internal environment of the cell from the external surroundings. Over the last two decades, the vision of a homogenous fluid mosaic model gave the space to a more complex model of description, which sees the compartmentalization of lipids and proteins in functional and specialized subdomains, also called lipid rafts. They are described as dynamic regions, whose composition and lateral organization constantly change in response to cellular stimuli. In particular, they are believed to play central functions in cellular signaling, protein mobilization, and membrane trafficking. Moreover, diverse endocytosis mechanisms have been discovered, and some of these are thought to be regulated by lipid rafts, including the internalization of membrane pathogens such as viruses, cargo molecules targeting and delivery, as well as extracellular vesicles uptake. Focusing on extracellular vesicles, they have been described as nanometer-sized vesicles (∼30 − 2000 nm), and recently proposed as important mediators of intercellular communication between all cells of our body. A particular sub-class of extracellular vesicles, also known as small extracellular vesicles (∼ 30 − 150), have attracted interest as a suitable drug delivery systems, displaying a composition that reflects their cells of origin, and a small size that makes them able to cross biological barriers through the body. These two features, combined with their high biocompatibility and specific targeting, make them primarily involved in the regulation of pathophysiological processes, such as cancer progression, metastasis formation, and cell proliferation. However, a clear knowledge of the sEVs functioning and their roles in biological systems, as well as the mechanisms that regulate their selective interaction with recipient cells, is still missing and fundamental for therapeutic usage. However, given the complexity of cell membranes, and the small size of sEVs, along with the development of new tools for investigating plasma membrane dynamics and sEVs interaction processes, the exploration and formulation of biomimetic cell membrane systems have been gaining great interest for investigating various cellular processes (e.g. biomolecules interaction, lipids redistribution). Based on these considerations, a biophysical approach that focuses on the development of a model system mimicking lipid rafts subdomains is here proposed, followed by its application for analysis of small extracellular vesicles uptake mechanisms. The protocol showed the possibility of using atomic force microscopy to study the dynamics of sEVs fusion mechanisms, providing spatial and time-resolved information about lipid rafts morphological changes upon vesicles fusion. More in detail, the system has been applied to sEVs from a cellular model of a metastatic cell line, the triple-negative breast cancer cells, interacting with a range of synthetic planar lipid bilayers displaying lipid phase separation with different cholesterol amount and degree of fluidity, designed to mimic the formation of ‘raft’-like nanodomains in cell membranes. Using time-resolved AFM under temperature control, it has been possible to show the strong dependence of sEVs uptake, and the associated local membrane composition and membrane fluidity. The strongest interaction and sEVs mixing with the lipid bilayer has been observed over the less fluid regions, with sEVs even able to disrupt ordered domains at sufficiently high cholesterol concentration. The obtained results highlighted the possibility of using the developed model system to investigate, from a biophysical perspective, the mechanisms regulating sEVs uptake, suggesting that tuning the plasma membrane characteristics might be instrumental to regulating sEVs uptake for EVs-based drug delivery applications.
13-mar-2024
36
2022/2023
Settore FIS/03 - Fisica della Materia
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
Paba_Tesi_ciclo36_finale.pdf

accesso aperto

Descrizione: Tesi versione finale
Tipologia: Tesi di dottorato
Dimensione 22.39 MB
Formato Adobe PDF
22.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3070940
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact