Tick-Borne Encephalitis Virus (TBEV) belongs to the Flaviviridae family, which includes several highly pathogenic human viruses. Currently, there are no drug treatments available neither a vaccine for most of them. For these reasons, it is necessary to identify and characterize novel compounds to treat flavivirus infection. More recently, Host-directed Therapy (HDT) has been suggested as a promising strategy to identify broad-range antivirals, since it targets essential host cell factors, and it is indeed less prone to develop drug resistance phenotypes. Flaviviruses replicate in the Endoplasmic Reticulum (ER) leading to membrane rearrangements, overload of the secretory pathway and a condition of ER stress. To restore homeostasis, the cell goes through the activation of a cellular stress response pathway, known as Unfolded Protein Response (UPR). It has been demonstrated that UPR priming is able to synergize with the innate immune response to mount an early antiviral defense. This is shown by an increase of Interferon Regulatory Factor 3 (IRF3) translocation from the cytoplasm to the nucleus already at 8 hours following infection. Since these data reveal that it is possible to inhibit flaviviruses by targeting the UPR as a cellular pathway, HDT seems to be the perfect tool to discover novel antivirals. The aim of the project is to build on these observations to develop anti-TBEV drugs targeting the ER stress response. We used lentiviral particles to create a stable cell line expressing a chimeric eGFP-IRF3 (U2OS eGFP-IRF3) for microscopy-based High-Content Screening (HCS). An antiviral assay based on a dual readout for both IRF3 nuclear translocation and TBEV inhibition was then developed for antiviral drug discovery. A preliminary screening was performed with an FDA-approved library of 1280 compounds. Although several inhibitors of TBEV replication or activators of IRF3 translocation were identified, none showed the double phenotype. We then moved on to test an ER stress-related library of 144 compounds. Results converged on the identification of five drugs that showed the double phenotype, all of which belonged to a defined class of Integrated Stress Response (ISR) inhibitors. In particular, three out five were described as specific PERK inhibitors. Validation of hits by dose-response experiments confirmed good anti-TBEV activity and an IRF3-activity also at nanomolar concentrations without cytotoxicity. Furthermore, kinetic studies revealed an early activation of the innate immune response showed by an upregulation of some ISGs (Viperin and IFIT1) already at 16 hours post infection. Moreover, data on U2OS cells knockdown for PERK confirmed the data obtained by PERK chemical inhibition and excluded off-target effects. Since both silencing and chemical inhibition of PERK can still lead to eIF2α activation by the other ISR kinases, an eIF2α mutant carrying an aminoacidic substitution at position 51 (S51A), that disrupts the phosphorylation site, has been used to validate the eIF2α role in TBEV antiviral defense. Phosphorylation-incompetent eIF2α cells showed a constitutive active TBK1/IRF3 pathway. This status of pre-activation of innate immunity caused a strong reduction in both TBEV replication and yield already at 16 h.pi. These data suggest PERK-eIF2α phosphorylation as a key target for HDT. This study highlights how phenotypic screening can help not only for antiviral drug discovery but also to define key pathways in the virus-host cell interaction. In particular, HCS allowed to identify ISR as a new druggable pathway that can be exploited for therapeutic purposes not limited to TBEV infection. Moreover, this work helped to better characterize the mechanism behind the interplay of the cellular stress response with Flavivirus.
Il virus dell’Encefalite da zecche (TBEV, Tick-borne Encephalitis Virus) appartiene al genere dei Flavivirus, che include diversi virus altamente patogenici per l’uomo. Nessun trattamento o vaccino è stato individuato per la maggior parte di essi, ed è per questo necessario identificare e caratterizzare nuove molecole o farmaci capaci di contrastarne l’infezione. Più recentemente, l’Host-directed Therapy (HDT) è stata proposta come una promettente strategia per la scoperta di antivirali ad ampio spettro. L’HDT, grazie alla capacità di mirare fattori essenziali dell’ospite, è infatti meno soggetta allo sviluppo della farmacoresistenza. I flavivirus si replicano nel Reticolo Endoplasmatico (RE) generando riarrangiamenti di membrana e sovraccarico delle vie secretorie. L’accumulo di proteine mal ripiegate all’interno del RE, crea una condizione di stress che a sua volta genera una risposta cellulare nota come Unfolded Protein Response (UPR). È stato dimostrato che la pre-attivazione dell’UPR, in corso di infezione da flaviviruses, rinforza l’immunità innata generando una risposta antivirale precoce. La risposta antivirale precoce è caratterizzata da un aumento della traslocazione nucleare del fattore di regolazione dell’Interferone 3 (IRF3) già a 8 ore dopo l’infezione. Partendo da queste osservazioni, lo scopo del progetto è individuare nuovi farmaci capaci di inibire TBEV attraverso la modulazione dell’UPR. Vettori lentivirali sono stati utilizzati per creare una linea cellulare che esprimesse stabilmente la proteina IRF3 fluorescente (U2OS eGFP-IRF3) da poter sfruttare in uno screening basato su immagini di microscopia. Per questo motivo, è stato ottimizzato un saggio antivirale caratterizzato da un duplice readout: inibizione di TBEV e traslocazione di IRF3. Una libreria di 1280 famaci approvati dall’FDA è stata utilizzata per uno screening preliminare, da cui sono stati identificati diversi inibitori della replicazione di TBEV o induttori della traslocazione di IRF3. Tuttavia, nessuno dei composti testati ha mostrato il duplice fenotipo desiderato. Una seconda libreria di 144 composti relativi allo stress del reticolo è stata successivamente testata. Di questi, cinque molecole appartenenti alla classe di inibitori dell’Integrated Stress Response (ISR) pathway hanno mostrato sia un incremento nucleare di IRF3 che un blocco dell’infezione virale. Tra questi, tre sono stati precedentemente descritti come inibitori specifici della chinasi PERK. La validazione delle hits, con esperimenti di dose-risposta, ha confermato una buona attività antivirale ed un’aumentata traslocazione nucleare di IRF3, fino a concentrazioni nel range del nanomolare. In aggiunta, ulteriori studi hanno rivelato che le hits identificate sono capaci di indurre una risposta immunitaria precoce, visibile sin dalle 16 ore dopo l’infezione. Esperimenti condotti in cellule U2OS silenziate per PERK, hanno mostrato un fenotipo simile a quello ottenuto con gli inibitori chimici, dimostrando la specificità dei farmaci. Dal momento che sia il silenziamento che l’inibizione chimica di PERK non sono sufficienti a bloccare l’attivazione di eIF2α da parte delle altre chinasi dell’ISR, un mutante di eIF2α, contenente una sostituzione amminoacidica in posizione 51 (S51A) che distrugge il sito di fosforilazione, è stato utilizzato per validare il ruolo di eIF2α nella risposta antivirale a TBEV. Cellule in cui eIF2α non è fosforilabile, hanno riportato un’attivazione costitutiva della TBK1/IRF3 pathway. Questo stato di pre-attivazione dell’immunità innata ha causato una consistente riduzione sia della replicazione che del titolo di TBEV. Questi dati suggeriscono quindi che la fosforilazione PERK-eIF2α è un target chiave per l’HDT.In conclusione, questo studio ha permesso di identificare l’ISR come una nuova via modulabile per scopi terapeutici non limitati a TBEV.
Identificazione di nuovi composti antivirali contro il virus dell'Encefalite da zecche (TBEV) tramite un approccio host-directed therapy / Dattola, Federica. - (2024 Mar 07).
Identificazione di nuovi composti antivirali contro il virus dell'Encefalite da zecche (TBEV) tramite un approccio host-directed therapy
DATTOLA, FEDERICA
2024-03-07
Abstract
Tick-Borne Encephalitis Virus (TBEV) belongs to the Flaviviridae family, which includes several highly pathogenic human viruses. Currently, there are no drug treatments available neither a vaccine for most of them. For these reasons, it is necessary to identify and characterize novel compounds to treat flavivirus infection. More recently, Host-directed Therapy (HDT) has been suggested as a promising strategy to identify broad-range antivirals, since it targets essential host cell factors, and it is indeed less prone to develop drug resistance phenotypes. Flaviviruses replicate in the Endoplasmic Reticulum (ER) leading to membrane rearrangements, overload of the secretory pathway and a condition of ER stress. To restore homeostasis, the cell goes through the activation of a cellular stress response pathway, known as Unfolded Protein Response (UPR). It has been demonstrated that UPR priming is able to synergize with the innate immune response to mount an early antiviral defense. This is shown by an increase of Interferon Regulatory Factor 3 (IRF3) translocation from the cytoplasm to the nucleus already at 8 hours following infection. Since these data reveal that it is possible to inhibit flaviviruses by targeting the UPR as a cellular pathway, HDT seems to be the perfect tool to discover novel antivirals. The aim of the project is to build on these observations to develop anti-TBEV drugs targeting the ER stress response. We used lentiviral particles to create a stable cell line expressing a chimeric eGFP-IRF3 (U2OS eGFP-IRF3) for microscopy-based High-Content Screening (HCS). An antiviral assay based on a dual readout for both IRF3 nuclear translocation and TBEV inhibition was then developed for antiviral drug discovery. A preliminary screening was performed with an FDA-approved library of 1280 compounds. Although several inhibitors of TBEV replication or activators of IRF3 translocation were identified, none showed the double phenotype. We then moved on to test an ER stress-related library of 144 compounds. Results converged on the identification of five drugs that showed the double phenotype, all of which belonged to a defined class of Integrated Stress Response (ISR) inhibitors. In particular, three out five were described as specific PERK inhibitors. Validation of hits by dose-response experiments confirmed good anti-TBEV activity and an IRF3-activity also at nanomolar concentrations without cytotoxicity. Furthermore, kinetic studies revealed an early activation of the innate immune response showed by an upregulation of some ISGs (Viperin and IFIT1) already at 16 hours post infection. Moreover, data on U2OS cells knockdown for PERK confirmed the data obtained by PERK chemical inhibition and excluded off-target effects. Since both silencing and chemical inhibition of PERK can still lead to eIF2α activation by the other ISR kinases, an eIF2α mutant carrying an aminoacidic substitution at position 51 (S51A), that disrupts the phosphorylation site, has been used to validate the eIF2α role in TBEV antiviral defense. Phosphorylation-incompetent eIF2α cells showed a constitutive active TBK1/IRF3 pathway. This status of pre-activation of innate immunity caused a strong reduction in both TBEV replication and yield already at 16 h.pi. These data suggest PERK-eIF2α phosphorylation as a key target for HDT. This study highlights how phenotypic screening can help not only for antiviral drug discovery but also to define key pathways in the virus-host cell interaction. In particular, HCS allowed to identify ISR as a new druggable pathway that can be exploited for therapeutic purposes not limited to TBEV infection. Moreover, this work helped to better characterize the mechanism behind the interplay of the cellular stress response with Flavivirus.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis_FedericaDattola_final.pdf
embargo fino al 07/03/2025
Descrizione: PhD thesis final version
Tipologia:
Tesi di dottorato
Dimensione
5.19 MB
Formato
Adobe PDF
|
5.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.