Chemical conjugation to carrier proteins has been traditionally used to improve polysaccharides immunogenicity and to overcome the limitations of T-independent antigens, including lack of immunological memory and no efficacy in infants. A double-hit approach, meaning that both polysaccharide and carrier protein belong to the same pathogen, may be particularly useful for bacterial species with large glycan variability. Recently, bacterial protein glycosylation has been exploited to obtain glycosylated proteins in E. coli cytoplasm. This system relies on a N-glucosyltransferase enzyme which catalyzes the transfer of a single β-linked glucose onto engineered N-x-S/T sequons on recombinant proteins. In my PhD work, I have used this technology for the development of novel selective glycoconjugates, with the aim of preserving the antigenicity of the carrier protein. Klebsiella pneumoniae (Kp) capsular (K-antigens) and subcapsular (O-antigens) polysaccharides have been selected as model antigens for the generation of double-hit vaccines using MrkA as carrier protein and potential Kp protective antigen. MrkA, the major component of Kp type 3 fimbriae, possesses a high degree of sequence conservation among different isolates, and thus its use in a glycoconjugate might increase the vaccine coverage, considering the diversity of Kp K- and O-antigens. A glycosylation pathway was successfully established in E. coli for MrkA modification with a lactose moiety, after deleting lacZ gene to prevent the disaccharide catabolism. Kp O1v1 O-antigen (~ 20 kDa) and K2 K-antigen (~ 150 kDa) were selectively conjugated to Lac-MrkA and their immunogenicity was evaluated in mice in comparison to more traditional random glycoconjugates as well as to MrkA alone. The ability of MrkA to work as carrier for polysaccharides was proportional to the molecular mass of the final glycoconjugate. Interestingly, the mice study highlighted the ability of a long polysaccharide like K2 to work as “carrier” for MrkA increasing the immunogenicity, poor per se, of the protein selectively linked along its chain. The new conjugation approach developed in this work can be easily extended to other pathogens, combining polysaccharide and protein antigens in novel effective glycoconjugate vaccines with broader coverage. Overall, my work represents an innovative example of how the glycoengineering technology can be combined to conjugation chemistry for the development of effective glycoconjugate vaccines.

La coniugazione chimica di polisaccaridi a proteine carrier è stata usata tradizionalmente per superare le limitazioni di questi antigeni T-indipendenti, come la mancanza di memoria immunologica e di efficacia nei bambini, e migliorarne quindi la loro immunogenicità. Un approccio double-hit, dove sia il polisaccaride che la proteina carrier appartengono allo stesso patogeno, può essere particolarmente utile nel caso di specie batteriche con una ampia variabilità di strutture saccaridiche. Recentemente, la N-glicosilazione batterica è stata sfruttata per ottenere proteine glicosilate nel citoplasma di E. coli. Questo sistema si basa su di una N-glucosiltransferasi che catalizza il trasferimento di un singolo glucosio a livello del sequon N-x-S/T ingegnerizzato in proteine ricombinanti. Nel mio progetto di dottorato, ho investigato questa tecnologia per lo sviluppo di nuovi glicoconiugati selettivi, con lo scopo di preservare l’antigenicità della proteina carrier. Polisaccaridi capsulari (antigeni K) e subcapsulari (antigeni O) di Klebsiella pneumoniae (Kp) sono stati selezionati come antigeni modello per la generazione di vaccini “double-hit” utilizzando MrkA come carrier e potenziale antigene protettivo. MrkA, il principale componente delle fimbrie di tipo 3 di Kp, possiede un elevato grado di conservazione genica, quindi il suo utilizzo in un glicoconiugato potrebbe aumentare la copertura di un vaccino contro Kp, considerata la diversità dei suoi antigeni O e K. Un pathway di glicosilazione è stato introdotto con successo in E. coli per modificare MrkA con un lattosio, dopo aver deleto il gene lacZ per prevenire il catabolismo di questo disaccaride. L’antigene O O1v1 (~ 20 kDa) e l’antigene K K2 (~ 150 kDa) sono stati coniugati selettivamente a Lac-MrkA e la loro immunogenicità valutata in uno studio nei topi in confronto a coniugati random più tradizionali ed a MrkA da sola. L’abilità di MrkA di funzionare come carrier per polisaccaridi è risultata proporzionale alla massa molecolare del glicoconiugato finale. Inoltre, lo studio ha evidenziato l’abilità di un polisaccaride con una lunga catena come quella di K2 di agire come carrier per MrkA aumentando l’immunogenicità, di per sé scarsa, della proteina coniugatavi in maniera selettiva. Questo nuovo approccio di coniugazione può essere facilmente esteso ad altri patogeni, combinando polisaccaridi e antigeni proteici in nuovi vaccini gliconiugati con una più ampia copertura. In conclusione, il mio lavoro rappresenta un esempio di come la tecnologia di glycoengineering può essere combinata con la coniugazione chimica per lo sviluppo di efficaci vaccini innovativi.

Investigazione di tecnologie alternative per lo sviluppo di vaccini basati su polisaccaridi / Palmieri, Elena. - (2024 Mar 07).

Investigazione di tecnologie alternative per lo sviluppo di vaccini basati su polisaccaridi

PALMIERI, ELENA
2024-03-07

Abstract

Chemical conjugation to carrier proteins has been traditionally used to improve polysaccharides immunogenicity and to overcome the limitations of T-independent antigens, including lack of immunological memory and no efficacy in infants. A double-hit approach, meaning that both polysaccharide and carrier protein belong to the same pathogen, may be particularly useful for bacterial species with large glycan variability. Recently, bacterial protein glycosylation has been exploited to obtain glycosylated proteins in E. coli cytoplasm. This system relies on a N-glucosyltransferase enzyme which catalyzes the transfer of a single β-linked glucose onto engineered N-x-S/T sequons on recombinant proteins. In my PhD work, I have used this technology for the development of novel selective glycoconjugates, with the aim of preserving the antigenicity of the carrier protein. Klebsiella pneumoniae (Kp) capsular (K-antigens) and subcapsular (O-antigens) polysaccharides have been selected as model antigens for the generation of double-hit vaccines using MrkA as carrier protein and potential Kp protective antigen. MrkA, the major component of Kp type 3 fimbriae, possesses a high degree of sequence conservation among different isolates, and thus its use in a glycoconjugate might increase the vaccine coverage, considering the diversity of Kp K- and O-antigens. A glycosylation pathway was successfully established in E. coli for MrkA modification with a lactose moiety, after deleting lacZ gene to prevent the disaccharide catabolism. Kp O1v1 O-antigen (~ 20 kDa) and K2 K-antigen (~ 150 kDa) were selectively conjugated to Lac-MrkA and their immunogenicity was evaluated in mice in comparison to more traditional random glycoconjugates as well as to MrkA alone. The ability of MrkA to work as carrier for polysaccharides was proportional to the molecular mass of the final glycoconjugate. Interestingly, the mice study highlighted the ability of a long polysaccharide like K2 to work as “carrier” for MrkA increasing the immunogenicity, poor per se, of the protein selectively linked along its chain. The new conjugation approach developed in this work can be easily extended to other pathogens, combining polysaccharide and protein antigens in novel effective glycoconjugate vaccines with broader coverage. Overall, my work represents an innovative example of how the glycoengineering technology can be combined to conjugation chemistry for the development of effective glycoconjugate vaccines.
7-mar-2024
CESCUTTI, PAOLA
36
2022/2023
Settore BIO/10 - Biochimica
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
PhD thesis_ElenaPalmieri_final version.pdf

accesso aperto

Descrizione: Investigation of alternative technologies for the development of polysaccharide-based vaccines
Tipologia: Tesi di dottorato
Dimensione 4.04 MB
Formato Adobe PDF
4.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3071265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact