Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder that primarily affects females, with an incidence of 1 in 10,000 live female births. The syndrome typically manifests during childhood and is characterized by a loss of acquired motor and communication skills, along with the development of stereotyped hand movements, breathing problems, cardiac issues, and epileptic seizures. The majority of RTT cases (about 95%) are caused by sporadic mutations in the MECP2 gene, which encodes a protein called methyl-CpG binding protein 2 (MeCP2). This genetic mutation leads to various clinical and anatomical abnormalities in affected individuals, including reduced cerebral volume, neuronal atrophy, and disrupted neuronal networks. Currently there is no cure for Rett syndrome. In most of the studies, mouse models deleted for the MECP2 gene (Mecp2−/y) were used to reproduce both phenotypical and behavioural RTT features, such as anxiety, social impairments and motor dysfunctions. Exploiting a mouse model Mecp2−/y, in 2014 Baj and colleagues developed an in vitro model of primary hippocampal neurons that allowed for the identification of crucial timepoints in neuronal development. Later on, in 2020 Nerli and colleagues described a new in vitro model of dendritic atrophy in Mecp2−/y mouse hippocampal primary cultures suitable to perform a high content drug screening with the aim to perform a rapid and automatic analysis of thousands of molecular compounds of interest. Thanks to this new in vitro model, this study focused on testing a library of 640 drugs in a primary screening for their ability to rescue neuronal atrophy in cultures of Mecp2−/y neurons at DIV 6. Out of the primary screening, 58 candidate hits were isolated and 14 drugs were finally confirmed after a re-screening at DIV 6. Sholl analysis and Strahler analysis were performed at DIV 12 in order to assess the morphological and branching complexity of Mecp2−/y neurons treated with these drugs. Notably, several drugs, including mirtazapine, demonstrated therapeutic potential by promoting a recovery of neuronal atrophy, particularly in the medial and distal dendrites. These findings suggest that these drugs could be beneficial at two crucial developmental timepoints, DIV 6 and DIV 12. To identify the most effective treatments, additional analyses were performed, including radar plots, Principal Component Analyses, and dendrogram-based analyses. The results revealed that specific drugs, such as drugs 1, 2, 3, 4, 5, and 15, exhibited the most promise. These drugs were classified into three groups: best, intermediate, and less effective drugs. Importantly, in-silico screening was also conducted to identify potential drug targets and associated pathways. The results from this in-silico analysis aligned with the experimental findings, providing further support for the identified drug candidates. Additionally, pathway enrichment analysis was performed, revealing shared pathways among different drugs. 105 possible combinations between the 14 drugs were explored, ultimately identifying eight combinations that could rescue dendritic atrophy more effectively than single drugs alone. Furthermore, a bioinformatic analysis was carried out to identify target genes and biochemical pathways already associated with the mechanism of action of these drugs. The analysis highlighted similarities with the in-silico predictions, further strengthening the study's findings. As a proof of principle for drug repurposing, the mechanism of action of mirtazapine was investigated, which served as the positive internal control during the drug screening process at DIV 12. The results, supported by in-silico predictions and western-blot analysis, suggested a hyper-activation of pERK in Mecp2 KO neurons compared to WT neurons. This finding has implications for potentially categorizing Rett syndrome as a RASopathy.

La sindrome di Rett (RTT) è una rara patologia del neurosviluppo legata al cromosoma X che colpisce principalmente le femmine, con un'incidenza di 1 su 10.000. Questa sindrome si manifesta tipicamente durante l'infanzia ed è caratterizzata dalla perdita delle abilità motorie e di comunicazione acquisite, insieme allo sviluppo di movimenti stereotipati delle mani, problemi respiratori, disturbi cardiaci e crisi epilettiche. La maggior parte dei casi di RTT (circa il 95%) è causata da mutazioni sporadiche nel gene MECP2, che codifica una proteina chiamata proteina di legame al metil-CpG 2 (MeCP2). Questa mutazione genetica porta a varie anomalie cliniche e anatomiche nei pazienti affetti, tra cui una riduzione del volume cerebrale, atrofia neuronale e disturbi delle reti neuronali.Attualmente non esiste una cura per la sindrome di Rett. Nella maggior parte degli studi, sono stati utilizzati modelli murini privi del gene MECP2 (Mecp2−/y) per replicare le caratteristiche fenotipiche e comportamentali della RTT, come l'ansia, i problemi sociali e le disfunzioni motorie. Nel 2014, Baj e colleghi hanno sviluppato un modello in vitro di neuroni ippocampali primari che ha permesso di identificare punti cruciali nello sviluppo neuronale. Successivamente, nel 2020, Nerli e colleghi hanno descritto un nuovo modello in vitro di atrofia dendritica in colture primarie di ippocampo murino Mecp2−/y, adatto per eseguire uno screening ad alto contenuto di molecole di interesse. Grazie a questo nuovo modello in vitro, lo studio si è concentrato sulla verifica di una libreria di 640 farmaci in uno screening primario per valutarne l'efficacia nel ripristinare l'atrofia neuronale in colture di neuroni Mecp2−/y a DIV 6. Dall'analisi primaria sono emersi 58 candidati promettenti, di cui 14 sono stati confermati dopo un re-screening a DIV 6. Successivamente, sono state eseguite analisi Sholl e Strahler a DIV 12 al fine di valutare la morfologia e la complessità di ramificazione dei neuroni Mecp2−/y trattati con questi farmaci. In particolare, alcuni farmaci, tra cui la mirtazapina, hanno dimostrato un potenziale terapeutico promuovendo il recupero dell'atrofia neuronale, in particolare nelle dendriti mediali e distali. Questi risultati suggeriscono che questi farmaci potrebbero essere benefici in due punti cruciali dello sviluppo neuronale, DIV 6 e DIV 12.Per identificare i trattamenti più efficaci, sono state eseguite ulteriori analisi, tra cui analisi radar, analisi delle componenti principali e analisi basate su dendrogrammi. I risultati hanno rivelato che farmaci specifici, come i farmaci 1, 2, 3, 4, 5 e 15, mostravano il maggior potenziale. Questi farmaci sono stati classificati in tre gruppi: migliori, intermedi e meno efficaci. Inoltre, è stata condotta un'analisi in silico per identificare potenziali bersagli farmacologici e percorsi associati. I risultati di questa analisi in silico sono stati in linea con i risultati sperimentali, fornendo ulteriore supporto per i candidati farmaci identificati.Inoltre, è stata eseguita un'analisi di arricchimento dei meccanismi di azione, che ha rivelato percorsi comuni tra diversi farmaci. Sono state esplorate 105 possibili combinazioni tra i 14 farmaci a DIV 6, identificando alla fine otto combinazioni in grado di ripristinare in modo più efficace l'atrofia dendritica rispetto ai singoli farmaci. Inoltre, è stata condotta un'analisi bioinformatica per identificare i geni bersaglio e i percorsi biochimici già associati al meccanismo d'azione di questi farmaci. L'analisi ha evidenziato somiglianze con le previsioni in silico, rafforzando ulteriormente i risultati dello studio.Come prova di principio per il riposizionamento di farmaci, è stato avviato uno studio sul meccanismo d'azione della mirtazapina. I risultati hanno suggerito un'iperattivazione di pERK nei neuroni Mecp2 KO rispetto ai neuroni WT. Questa scoperta classifica la sindrome di Rett come una possibile RASopatia.

Un approccio farmacologico sistemico per trattamenti innovativi volti a promuovere il recupero dell'atrofia neuronale nella sindrome di Rett / Roggero, OTTAVIA MARIA. - (2024 Mar 21).

Un approccio farmacologico sistemico per trattamenti innovativi volti a promuovere il recupero dell'atrofia neuronale nella sindrome di Rett

ROGGERO, OTTAVIA MARIA
2024-03-21

Abstract

Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder that primarily affects females, with an incidence of 1 in 10,000 live female births. The syndrome typically manifests during childhood and is characterized by a loss of acquired motor and communication skills, along with the development of stereotyped hand movements, breathing problems, cardiac issues, and epileptic seizures. The majority of RTT cases (about 95%) are caused by sporadic mutations in the MECP2 gene, which encodes a protein called methyl-CpG binding protein 2 (MeCP2). This genetic mutation leads to various clinical and anatomical abnormalities in affected individuals, including reduced cerebral volume, neuronal atrophy, and disrupted neuronal networks. Currently there is no cure for Rett syndrome. In most of the studies, mouse models deleted for the MECP2 gene (Mecp2−/y) were used to reproduce both phenotypical and behavioural RTT features, such as anxiety, social impairments and motor dysfunctions. Exploiting a mouse model Mecp2−/y, in 2014 Baj and colleagues developed an in vitro model of primary hippocampal neurons that allowed for the identification of crucial timepoints in neuronal development. Later on, in 2020 Nerli and colleagues described a new in vitro model of dendritic atrophy in Mecp2−/y mouse hippocampal primary cultures suitable to perform a high content drug screening with the aim to perform a rapid and automatic analysis of thousands of molecular compounds of interest. Thanks to this new in vitro model, this study focused on testing a library of 640 drugs in a primary screening for their ability to rescue neuronal atrophy in cultures of Mecp2−/y neurons at DIV 6. Out of the primary screening, 58 candidate hits were isolated and 14 drugs were finally confirmed after a re-screening at DIV 6. Sholl analysis and Strahler analysis were performed at DIV 12 in order to assess the morphological and branching complexity of Mecp2−/y neurons treated with these drugs. Notably, several drugs, including mirtazapine, demonstrated therapeutic potential by promoting a recovery of neuronal atrophy, particularly in the medial and distal dendrites. These findings suggest that these drugs could be beneficial at two crucial developmental timepoints, DIV 6 and DIV 12. To identify the most effective treatments, additional analyses were performed, including radar plots, Principal Component Analyses, and dendrogram-based analyses. The results revealed that specific drugs, such as drugs 1, 2, 3, 4, 5, and 15, exhibited the most promise. These drugs were classified into three groups: best, intermediate, and less effective drugs. Importantly, in-silico screening was also conducted to identify potential drug targets and associated pathways. The results from this in-silico analysis aligned with the experimental findings, providing further support for the identified drug candidates. Additionally, pathway enrichment analysis was performed, revealing shared pathways among different drugs. 105 possible combinations between the 14 drugs were explored, ultimately identifying eight combinations that could rescue dendritic atrophy more effectively than single drugs alone. Furthermore, a bioinformatic analysis was carried out to identify target genes and biochemical pathways already associated with the mechanism of action of these drugs. The analysis highlighted similarities with the in-silico predictions, further strengthening the study's findings. As a proof of principle for drug repurposing, the mechanism of action of mirtazapine was investigated, which served as the positive internal control during the drug screening process at DIV 12. The results, supported by in-silico predictions and western-blot analysis, suggested a hyper-activation of pERK in Mecp2 KO neurons compared to WT neurons. This finding has implications for potentially categorizing Rett syndrome as a RASopathy.
21-mar-2024
TONGIORGI, Enrico
36
2022/2023
Settore BIO/06 - Anatomia Comparata e Citologia
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
PhD_thesis_Roggero_DEFINITIVA.pdf

embargo fino al 21/03/2025

Descrizione: A SYSTEMS PHARMACOLOGY APPROACH FOR INNOVATIVE TREATMENTS TO PROMOTE RECOVERY OF NEURONAL ATROPHY IN RETT SYNDROME
Tipologia: Tesi di dottorato
Dimensione 10.28 MB
Formato Adobe PDF
10.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3071639
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact