Sessile benthic organisms can be affected by global changes and local pressures, such as metal pollution, that can lead to damages at different levels of biological organization. Effects of exposure to marine heatwaves (MHWs) alone and in combination with environmentally relevant concentration of copper (Cu) were evaluated in the reef-forming tubeworm Ficopomatus enigmaticus using a multi-biomarker approach. Biomarkers of cell membrane damage, enzymatic antioxidant defences, metabolic activity, neurotoxicity, and DNA integrity were analyzed. The exposure to Cu alone did not produce any significant effect. Exposure to MHWs alone produced effects only on metabolic activity (increase of glutathione S-transferase) and energy reserves (decrease in protein content). MHWs in combination with copper was the condition that most influenced the status of cell homeostasis of exposed F. enigmaticus. The combination of MHWs plus Cu exposure induced increase of protein carbonylation and glutathione S-transferase activity, decrease in protein/carbohydrate content and carboxylesterase activity. This study on a reef-forming organism highlighted the additive effect of a climate change-related stressor to metals pollution of marine and brackish waters.
Assessing combined effects of long-term exposure to copper and marine heatwaves on the reef-forming serpulid Ficopomatus enigmaticus through a biomarker approach
Verdiana Vellani;Monia Renzi
2024-01-01
Abstract
Sessile benthic organisms can be affected by global changes and local pressures, such as metal pollution, that can lead to damages at different levels of biological organization. Effects of exposure to marine heatwaves (MHWs) alone and in combination with environmentally relevant concentration of copper (Cu) were evaluated in the reef-forming tubeworm Ficopomatus enigmaticus using a multi-biomarker approach. Biomarkers of cell membrane damage, enzymatic antioxidant defences, metabolic activity, neurotoxicity, and DNA integrity were analyzed. The exposure to Cu alone did not produce any significant effect. Exposure to MHWs alone produced effects only on metabolic activity (increase of glutathione S-transferase) and energy reserves (decrease in protein content). MHWs in combination with copper was the condition that most influenced the status of cell homeostasis of exposed F. enigmaticus. The combination of MHWs plus Cu exposure induced increase of protein carbonylation and glutathione S-transferase activity, decrease in protein/carbohydrate content and carboxylesterase activity. This study on a reef-forming organism highlighted the additive effect of a climate change-related stressor to metals pollution of marine and brackish waters.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0025326X24002467-main.pdf
accesso aperto
Descrizione: Articolo Vellani et al. 2024 aprile
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.