COVID-19, short for Coronavirus Disease 2019, is a disease caused by infection with the severe acute respiratory syndrome virus 2 (SARS-CoV-2). The severity of symptoms can vary, with potential complications including lung thrombosis, acute respiratory distress syndrome (ARDS), abnormal activation of the inflammatory response (cytokine storm), and rapid deterioration of lung function characterized by alveolar edema. Prior research has established that SARS-CoV-2 enters the cells through the interaction between its spike protein (SPIKE) and the angiotensin-converting enzyme 2 (ACE2) receptor. These infected cells exhibit reduced levels of ACE2 on their cell membranes due to the internalization and lysosomal degradation driven by SPIKE. Furthermore, these cells display SPIKE on their surfaces, allowing them to fuse with neighboring cells, resulting in the formation of polynucleated cells known as syncytia. These syncytia facilitate the rapid spread of the virus and enable the incorporation of lymphocytes, thereby contributing to viral immune evasion. A specific amino acid sequence, containing a bi-arginine motif at R682 and R685 within the polybasic S1/S2 cleavage site, was identified as responsible for the fusogenic ability of SPIKE. A study conducted by Professor Mauro Giacca's team has shed light on the potential therapeutic use of niclosamide in COVID-19. Niclosamide's ability to block the formation of syncytia is attributed to its inhibition of the TMEM16 family, in particular TMEM16F, known for its scramblase activity. However, the precise molecular processes leading to syncytia formation remain largely unknown. Here, we have explored potential interactions between ACE2 and TMEM16A and TMEM16F (TMEM16s), as well as interactions between TMEM16s and SPIKE, using proximity ligation assays (PLA), co-immunoprecipitation (coIP), and fluorescence resonance energy transfer (FRET) techniques. During our investigation of these interactions, we observed that TMEM16A, and to a lesser extent, TMEM16F, were associated with reduced expression levels of ACE2. Our experiments involving treatment with Bafilomycin (an inhibitor of auphagic flux) provided evidence that ACE2 degradation induced by TMEM16s occurs within lysosomes, as it occurs with SPIKE. Furthermore, we identified that both TMEM16s knockdown and treatment with niclosamide effectively prevented the SPIKE-driven ACE2 degradation. These findings collectively suggest the possible formation of a protein complex involving ACE2, SPIKE, and TMEM16s, which plays a critical role in ACE2 degradation and the process of syncytia formation. It is important to note that syncytia formation is a shared feature among various viruses, and ACE2 serves as a receptor for other coronaviruses as well. Understanding the intricate molecular pathways underlying these interactions holds significant implications, not only from a physiological perspective, given the central role of ACE2 in the renin-angiotensin-aldosterone system (RAAS), but also in the context of potential future viral infections that utilize the same receptor. Unraveling these pathways opens up possibilities for new therapeutic targets that could aid in the prevention of severe symptoms associated with these pathologies.

COVID-19, acronimo di "Coronavirus Disease 2019," è una malattia causata dall'infezione del virus della sindrome respiratoria acuta grave 2 (SARS-CoV-2). La severità dei sintomi può variare ampiamente di persona in persona e può portare a complicazioni come trombosi polmonari, sindrome da distress respiratorio acuto (ARDS), acuta ed eccessiva risposta infiammatoria (nota come tempesta citochinica) e un rapido peggioramento della funzione polmonare, con conseguente edema alveolare. Ricerche precedenti hanno stabilito che il virus SARS-CoV-2 entra nelle cellule attraverso l'interazione tra la sua proteina spike (SPIKE) e l'enzima di conversione dell'angiotensina 2 (ACE2). Le cellule infette mostrano livelli ridotti di ACE2 sulla loro membrana cellulare poiché SPIKE provoca l’internalizzazione e degradazione di ACE2 nei lisosomi. Inoltre, le cellule infettate espongono SPIKE sulla loro superficie, diventando in grado di fondersi con le cellule vicine e formare cellule polinucleate chiamate sincizi. Questi sincizi agevolano la rapida diffusione del virus e consentono l'incorporazione di linfociti, contribuendo all’evasione delle cellule infettate dall’azione del sistema immunitario. È importante notare che è stata individuata una specifica sequenza amminoacidica di SPIKE, contenente un motivo a due arginine in R682 e R685 all'interno del sito di taglio polibasico S1/S2, come responsabile dell'abilità fusogena della proteina. Uno studio condotto dal team del Professor Mauro Giacca ha evidenziato il potenziale uso della niclosamide come terapia nel COVID-19. L'abilità di questo farmaco, già in commercio come antielmintico orale, di bloccare la formazione di sincizi è attribuita alla sua capacità di inibire membri della famiglia delle TMEM16, in particolare TMEM16F, nota per la sua attività di scramblasi. Tuttavia, i dettagli dei processi molecolari alla base della formazione dei sincizi rimangono ancora largamente sconosciuti. In questo studio, abbiamo esplorato le possibili interazioni tra ACE2 e TMEM16A e TMEM16F (TMEM16s), così come le interazioni tra TMEM16s e SPIKE, sfruttando tecniche come la proximity ligation assay (PLA), co-immunoprecipitazione (coIP) e il trasferimento energetico per risonanza di fluorescenza (FRET). Durante queste indagini, abbiamo notato che TMEM16A e, in misura minore, TMEM16F, erano associate a livelli ridotti di espressione di ACE2. Trattamenti con Bafilomicina (un inibitore del flusso autofagico) hanno confermato che la degradazione di ACE2 causata dalle TMEM16s avviene nei lisosomi, come accade con SPIKE. Inoltre, abbiamo scoperto che sia il knockdown delle TMEM16s che il trattamento con niclosamide impediscono la degradazione di ACE2 indotta da SPIKE. Questi risultati suggeriscono l'esistenza di un possibile complesso proteico che coinvolge ACE2, SPIKE e le due TMEM16, il quale gioca un ruolo cruciale nella degradazione di ACE2 e nel processo di formazione dei sincizi. È importante notare che la formazione di sincizi è una caratteristica condivisa da vari virus, e che ACE2 funge da recettore anche per altri coronavirus. Comprendere le intricate vie molecolari che governano queste interazioni è di grande rilevanza, non solo dal punto di vista fisiologico, data l'importanza centrale di ACE2 nel sistema renina-angiotensina-aldosterone (RAAS), ma anche nell'ottica di possibili infezioni virali future che utilizzano lo stesso recettore. Questo approfondimento apre nuove prospettive per l'individuazione di potenziali bersagli terapeutici che potrebbero contribuire a prevenire i sintomi gravi associati a tali patologie.

A Novel Role for ACE2-TMEM16 Complexes in SARS-CoV-2 Infection / Vidmar, Martina. - (2024 Mar 22).

A Novel Role for ACE2-TMEM16 Complexes in SARS-CoV-2 Infection

VIDMAR, MARTINA
2024-03-22

Abstract

COVID-19, short for Coronavirus Disease 2019, is a disease caused by infection with the severe acute respiratory syndrome virus 2 (SARS-CoV-2). The severity of symptoms can vary, with potential complications including lung thrombosis, acute respiratory distress syndrome (ARDS), abnormal activation of the inflammatory response (cytokine storm), and rapid deterioration of lung function characterized by alveolar edema. Prior research has established that SARS-CoV-2 enters the cells through the interaction between its spike protein (SPIKE) and the angiotensin-converting enzyme 2 (ACE2) receptor. These infected cells exhibit reduced levels of ACE2 on their cell membranes due to the internalization and lysosomal degradation driven by SPIKE. Furthermore, these cells display SPIKE on their surfaces, allowing them to fuse with neighboring cells, resulting in the formation of polynucleated cells known as syncytia. These syncytia facilitate the rapid spread of the virus and enable the incorporation of lymphocytes, thereby contributing to viral immune evasion. A specific amino acid sequence, containing a bi-arginine motif at R682 and R685 within the polybasic S1/S2 cleavage site, was identified as responsible for the fusogenic ability of SPIKE. A study conducted by Professor Mauro Giacca's team has shed light on the potential therapeutic use of niclosamide in COVID-19. Niclosamide's ability to block the formation of syncytia is attributed to its inhibition of the TMEM16 family, in particular TMEM16F, known for its scramblase activity. However, the precise molecular processes leading to syncytia formation remain largely unknown. Here, we have explored potential interactions between ACE2 and TMEM16A and TMEM16F (TMEM16s), as well as interactions between TMEM16s and SPIKE, using proximity ligation assays (PLA), co-immunoprecipitation (coIP), and fluorescence resonance energy transfer (FRET) techniques. During our investigation of these interactions, we observed that TMEM16A, and to a lesser extent, TMEM16F, were associated with reduced expression levels of ACE2. Our experiments involving treatment with Bafilomycin (an inhibitor of auphagic flux) provided evidence that ACE2 degradation induced by TMEM16s occurs within lysosomes, as it occurs with SPIKE. Furthermore, we identified that both TMEM16s knockdown and treatment with niclosamide effectively prevented the SPIKE-driven ACE2 degradation. These findings collectively suggest the possible formation of a protein complex involving ACE2, SPIKE, and TMEM16s, which plays a critical role in ACE2 degradation and the process of syncytia formation. It is important to note that syncytia formation is a shared feature among various viruses, and ACE2 serves as a receptor for other coronaviruses as well. Understanding the intricate molecular pathways underlying these interactions holds significant implications, not only from a physiological perspective, given the central role of ACE2 in the renin-angiotensin-aldosterone system (RAAS), but also in the context of potential future viral infections that utilize the same receptor. Unraveling these pathways opens up possibilities for new therapeutic targets that could aid in the prevention of severe symptoms associated with these pathologies.
22-mar-2024
COMAR, Manola
36
2022/2023
Settore MED/07 - Microbiologia e Microbiologia Clinica
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
MartinaVidmar_corrections.pdf

accesso aperto

Descrizione: Tesi di Dottorato
Tipologia: Tesi di dottorato
Dimensione 12.98 MB
Formato Adobe PDF
12.98 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3071833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact