Respiratory infections are common in pregnancy with conflicting evidence supporting their association with neonatal congenital anomalies, especially during the first trimester. We profiled cytokine and chemokine systemic responses in 242 pregnant women and their newborns after SARS-CoV-2 infection, acquired in different trimesters. Also, we tested transplacental IgG passage and maternal vaginal–rectal microbiomes. IgG transplacental passage was evident, especially with infection acquired in the first trimester. G-CSF concentration—involved in immune cell recruitment—decreased in infected women compared to uninfected ones: a beneficial event for the reduction of inflammation but detrimental to ability to fight infections at birth. The later the infection was acquired, the higher the systemic concentration of IL-8, IP-10, and MCP-1, associated with COVID-19 disease severity. All infected women showed dysbiosis of vaginal and rectal microbiomes, compared to uninfected ones. Two newborns tested positive for SARS-CoV-2 within the first 48 h of life. Notably, their mothers had acute infection at delivery. Although respiratory infections in pregnancy are reported to affect babies’ health, with SARS-CoV-2 acquired early during gestation this risk seems low because of the maternal immune response. The observed vaginal and rectal dysbiosis could be relevant for neonatal microbiome establishment, although in our series immediate neonatal outcomes were reassuring.
Genital Dysbiosis and Different Systemic Immune Responses Based on the Trimester of Pregnancy in SARS-CoV-2 Infection
Giuseppina Campisciano
;Alice Sorz;Carolina Cason;Nunzia Zanotta;Fabrizia Gionechetti;Maria Piazza;Lisa Ballaminut;Giuseppe Ricci;Francesco De Seta;Manola Comar
2024-01-01
Abstract
Respiratory infections are common in pregnancy with conflicting evidence supporting their association with neonatal congenital anomalies, especially during the first trimester. We profiled cytokine and chemokine systemic responses in 242 pregnant women and their newborns after SARS-CoV-2 infection, acquired in different trimesters. Also, we tested transplacental IgG passage and maternal vaginal–rectal microbiomes. IgG transplacental passage was evident, especially with infection acquired in the first trimester. G-CSF concentration—involved in immune cell recruitment—decreased in infected women compared to uninfected ones: a beneficial event for the reduction of inflammation but detrimental to ability to fight infections at birth. The later the infection was acquired, the higher the systemic concentration of IL-8, IP-10, and MCP-1, associated with COVID-19 disease severity. All infected women showed dysbiosis of vaginal and rectal microbiomes, compared to uninfected ones. Two newborns tested positive for SARS-CoV-2 within the first 48 h of life. Notably, their mothers had acute infection at delivery. Although respiratory infections in pregnancy are reported to affect babies’ health, with SARS-CoV-2 acquired early during gestation this risk seems low because of the maternal immune response. The observed vaginal and rectal dysbiosis could be relevant for neonatal microbiome establishment, although in our series immediate neonatal outcomes were reassuring.File | Dimensione | Formato | |
---|---|---|---|
ijms-25-04298.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.