Fast-field cycling nuclear magnetic resonance (FFC NMR) relaxometry allows to investigate molecular dynamics of complex materials. FFC relaxometry experiments require the magnetic field to reach different values in few milliseconds and field oscillations to stay within few ppms during signal acquisition. Such specifications require the introduction of a novel field-frequency lock (FFL) system. In fact, control schemes based only on current feedback may not guarantee field stability, while standard FFLs are designed to handle very slow field fluctuations, such as thermal derives, and may be ineffective in rejecting faster ones. The aim of this work is then to propose a methodology for the synthesis of a regulator that guarantees rejection of field fluctuations and short settling time. Experimental trials are performed for both model validation and evaluation of the closed-loop performances. Relaxometry experiments are performed to verify the improvement obtained with the new FFL. The results highlight the reliability of the model and the effectiveness of the overall approach.

Towards a Model-Based Field-Frequency Lock for Fast-Field Cycling NMR

Raimondo D.;
2019-01-01

Abstract

Fast-field cycling nuclear magnetic resonance (FFC NMR) relaxometry allows to investigate molecular dynamics of complex materials. FFC relaxometry experiments require the magnetic field to reach different values in few milliseconds and field oscillations to stay within few ppms during signal acquisition. Such specifications require the introduction of a novel field-frequency lock (FFL) system. In fact, control schemes based only on current feedback may not guarantee field stability, while standard FFLs are designed to handle very slow field fluctuations, such as thermal derives, and may be ineffective in rejecting faster ones. The aim of this work is then to propose a methodology for the synthesis of a regulator that guarantees rejection of field fluctuations and short settling time. Experimental trials are performed for both model validation and evaluation of the closed-loop performances. Relaxometry experiments are performed to verify the improvement obtained with the new FFL. The results highlight the reliability of the model and the effectiveness of the overall approach.
File in questo prodotto:
File Dimensione Formato  
s00723-019-01130-y.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3073215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact