We report on the experimental quantification of the contribution to non-equilibrium entropy production stemming from the quantum coherence content in the initial state of a qubit exposed to both coherent driving and dissipation. Our experimental demonstration builds on the exquisite experimental control of the spin state of a nitrogen-vacancy defect in diamond and is underpinned, theoretically, by the formulation of a generalized fluctuation theorem designed to track the effects of quantum coherence. Our results provide significant evidence of the possibility to pinpoint the genuinely quantum mechanical contributions to the thermodynamics of non-equilibrium quantum processes in an open quantum systems scenario.

Experimental signature of initial quantum coherence on entropy production

Belenchia A.;Trombettoni A.;Paternostro M.;
2023-01-01

Abstract

We report on the experimental quantification of the contribution to non-equilibrium entropy production stemming from the quantum coherence content in the initial state of a qubit exposed to both coherent driving and dissipation. Our experimental demonstration builds on the exquisite experimental control of the spin state of a nitrogen-vacancy defect in diamond and is underpinned, theoretically, by the formulation of a generalized fluctuation theorem designed to track the effects of quantum coherence. Our results provide significant evidence of the possibility to pinpoint the genuinely quantum mechanical contributions to the thermodynamics of non-equilibrium quantum processes in an open quantum systems scenario.
File in questo prodotto:
File Dimensione Formato  
s41534-023-00738-0.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 723.63 kB
Formato Adobe PDF
723.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3073861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact