We report on the experimental quantification of the contribution to non-equilibrium entropy production stemming from the quantum coherence content in the initial state of a qubit exposed to both coherent driving and dissipation. Our experimental demonstration builds on the exquisite experimental control of the spin state of a nitrogen-vacancy defect in diamond and is underpinned, theoretically, by the formulation of a generalized fluctuation theorem designed to track the effects of quantum coherence. Our results provide significant evidence of the possibility to pinpoint the genuinely quantum mechanical contributions to the thermodynamics of non-equilibrium quantum processes in an open quantum systems scenario.
Experimental signature of initial quantum coherence on entropy production
Belenchia A.;Trombettoni A.;Paternostro M.;
2023-01-01
Abstract
We report on the experimental quantification of the contribution to non-equilibrium entropy production stemming from the quantum coherence content in the initial state of a qubit exposed to both coherent driving and dissipation. Our experimental demonstration builds on the exquisite experimental control of the spin state of a nitrogen-vacancy defect in diamond and is underpinned, theoretically, by the formulation of a generalized fluctuation theorem designed to track the effects of quantum coherence. Our results provide significant evidence of the possibility to pinpoint the genuinely quantum mechanical contributions to the thermodynamics of non-equilibrium quantum processes in an open quantum systems scenario.File | Dimensione | Formato | |
---|---|---|---|
s41534-023-00738-0.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
723.63 kB
Formato
Adobe PDF
|
723.63 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.