We propose a scheme for the quantum simulation of quantum link models in two-dimensional lattices. Our approach considers spinor dipolar gases on a suitably shaped lattice, where the dynamics of particles in the different hyperfine levels of the gas takes place in one-dimensional chains coupled by the dipolar interactions. We show that at least four levels are needed. The present scheme does not require any particular fine-tuning of the parameters. We perform the derivation of the parameters of the quantum link models by means of two different approaches, a nonperturbative one tied to angular-momentum conservation, and a perturbative one. A comparison with other schemes for (2+1)-dimensional quantum link models present in the literature is discussed. Finally, the extension to three-dimensional lattices is presented, and its subtleties are pointed out.
Quantum simulator of link models using spinor dipolar ultracold atoms
Trombettoni, AndreaUltimo
2023-01-01
Abstract
We propose a scheme for the quantum simulation of quantum link models in two-dimensional lattices. Our approach considers spinor dipolar gases on a suitably shaped lattice, where the dynamics of particles in the different hyperfine levels of the gas takes place in one-dimensional chains coupled by the dipolar interactions. We show that at least four levels are needed. The present scheme does not require any particular fine-tuning of the parameters. We perform the derivation of the parameters of the quantum link models by means of two different approaches, a nonperturbative one tied to angular-momentum conservation, and a perturbative one. A comparison with other schemes for (2+1)-dimensional quantum link models present in the literature is discussed. Finally, the extension to three-dimensional lattices is presented, and its subtleties are pointed out.File | Dimensione | Formato | |
---|---|---|---|
pra_107_043312_p_30_03_23.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
707.04 kB
Formato
Adobe PDF
|
707.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.