In this paper, we describe and analyze the spectral properties of several exact block preconditioners for a class of double saddle point problems. Among all these, we consider an inexact version of a block triangular preconditioner providing extremely fast convergence of the (F)GMRES method. We develop a spectral analysis of the preconditioned matrix showing that the complex eigenvalues lie in a circle of center ( 1 , 0 ) and radius 1, while the real eigenvalues are described in terms of the roots of a third-order polynomial with real coefficients. Numerical examples are reported to illustrate the efficiency of inexact versions of the proposed preconditioners and to verify the theoretical bounds.

Some preconditioning techniques for a class of double saddle point problems

ANGELES MARTINEZ CALOMARDO;
2024-01-01

Abstract

In this paper, we describe and analyze the spectral properties of several exact block preconditioners for a class of double saddle point problems. Among all these, we consider an inexact version of a block triangular preconditioner providing extremely fast convergence of the (F)GMRES method. We develop a spectral analysis of the preconditioned matrix showing that the complex eigenvalues lie in a circle of center ( 1 , 0 ) and radius 1, while the real eigenvalues are described in terms of the roots of a third-order polynomial with real coefficients. Numerical examples are reported to illustrate the efficiency of inexact versions of the proposed preconditioners and to verify the theoretical bounds.
2024
22-feb-2024
Pubblicato
File in questo prodotto:
File Dimensione Formato  
Numerical Linear Algebra App - 2024 - Balani Bakrani - Some preconditioning techniques for a class of double saddle point.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Numerical+Linear+Algebra+App+-+2024+-+Balani+Bakrani+-+Some+preconditioning+techniques+for+a+class+of+double+saddle+point-Post_print.pdf

Open Access dal 23/02/2025

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3073958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact