Context. The chemical evolution history of slow neutron-capture elements in the Milky Way is still a matter of debate, especially in the metal-poor regime ([Fe/H] < −1). Aims: Based on Gaia-ESO spectroscopic data, a recent study investigated the chemical evolution of neutron-capture elements in the regime [Fe/H] > −1. Here, we aim to complement this study down to [Fe/H] = −3, and focus on Ba, Y, and Sr, along with the abundance ratios of [Ba/Y] and [Sr/Y], which give comprehensive views on s-process nucleosynthesis channels. Methods: We measured the local thermodynamic equilibrium (LTE) and non-local thermodynamic equilibrium (NLTE) abundances of Ba, Y, and Sr in 323 Galactic metal-poor stars using high-resolution optical spectra with high signal-to-noise ratios. We used the spectral fitting code TSFitPy together with 1D model atmospheres, using previously determined LTE and NLTE atmospheric parameters. Results: We find that the NLTE effects are on the order of ∼ − 0.1 to ∼0.2 dex, depending on the element. We find that stars enhanced (deficient) in [Ba/Fe] and [Y/Fe] are also enhanced (deficient) in [Sr/Fe], suggesting a common evolution channel for these three elements. We find that the ratio between heavy and light s-process elements [Ba/Y] varies weakly with [Fe/H] even in the metal-poor regime, which is consistent with the behaviour in the metal-rich regime. The [Ba/Y] scatter at a given metallicity is larger than the abundance measurement uncertainties. Homogeneous chemical evolution models with different yield prescriptions are not able to accurately reproduce the [Ba/Y] scatter in the low-[Fe/H] regime. Adopting the stochastic chemical evolution model by Cescutti & Chiappini allows us to reproduce the observed scatter in the abundance pattern of [Ba/Y] and [Ba/Sr]. Based on our observations, we have ruled out the need for an arbitrary scaling of the r-process contribution, as previously suggested by the authors behind the construction of the model. Conclusions: We show how important it is to properly include NLTE effects when measuring chemical abundances, especially in the metal-poor regime. This work demonstrates that the choice of the Galactic chemical evolution model (stochastic versus one-zone) is key when comparing models to observations. Upcoming large-scale spectroscopic surveys such as 4MOST and WEAVE are poised to deliver high-quality data for many thousands of metal-poor stars and this work gives a typical case study of what could be achieved with such surveys in the future.

Observational constraints on the origin of the elements: VIII. Constraining the barium, strontium, and yttrium chemical evolution in metal-poor stars

Cescutti G.
Membro del Collaboration Group
;
2024-01-01

Abstract

Context. The chemical evolution history of slow neutron-capture elements in the Milky Way is still a matter of debate, especially in the metal-poor regime ([Fe/H] < −1). Aims: Based on Gaia-ESO spectroscopic data, a recent study investigated the chemical evolution of neutron-capture elements in the regime [Fe/H] > −1. Here, we aim to complement this study down to [Fe/H] = −3, and focus on Ba, Y, and Sr, along with the abundance ratios of [Ba/Y] and [Sr/Y], which give comprehensive views on s-process nucleosynthesis channels. Methods: We measured the local thermodynamic equilibrium (LTE) and non-local thermodynamic equilibrium (NLTE) abundances of Ba, Y, and Sr in 323 Galactic metal-poor stars using high-resolution optical spectra with high signal-to-noise ratios. We used the spectral fitting code TSFitPy together with 1D model atmospheres, using previously determined LTE and NLTE atmospheric parameters. Results: We find that the NLTE effects are on the order of ∼ − 0.1 to ∼0.2 dex, depending on the element. We find that stars enhanced (deficient) in [Ba/Fe] and [Y/Fe] are also enhanced (deficient) in [Sr/Fe], suggesting a common evolution channel for these three elements. We find that the ratio between heavy and light s-process elements [Ba/Y] varies weakly with [Fe/H] even in the metal-poor regime, which is consistent with the behaviour in the metal-rich regime. The [Ba/Y] scatter at a given metallicity is larger than the abundance measurement uncertainties. Homogeneous chemical evolution models with different yield prescriptions are not able to accurately reproduce the [Ba/Y] scatter in the low-[Fe/H] regime. Adopting the stochastic chemical evolution model by Cescutti & Chiappini allows us to reproduce the observed scatter in the abundance pattern of [Ba/Y] and [Ba/Sr]. Based on our observations, we have ruled out the need for an arbitrary scaling of the r-process contribution, as previously suggested by the authors behind the construction of the model. Conclusions: We show how important it is to properly include NLTE effects when measuring chemical abundances, especially in the metal-poor regime. This work demonstrates that the choice of the Galactic chemical evolution model (stochastic versus one-zone) is key when comparing models to observations. Upcoming large-scale spectroscopic surveys such as 4MOST and WEAVE are poised to deliver high-quality data for many thousands of metal-poor stars and this work gives a typical case study of what could be achieved with such surveys in the future.
2024
Pubblicato
File in questo prodotto:
File Dimensione Formato  
aa48522-23.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3075339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact