We study the relationship between antipodes on a Hopf algebroid \sr{$\mathcal{H}$} in the sense of B\"ohm--Szlachanyi and the group of twists that lies inside the associated convolution algebra \sr{$\mathcal{H}^*$}. We specialize to the case of a faithfully flat $H$-Hopf--Galois extensions $B\subseteq A$ and related Ehresmann--Schauenburg bialgebroid. In particular, we find that the twists are in one-to-one correspondence with $H$-comodule algebra automorphism of $A$. We work out in detail the $U(1)$-extension ${\mathcal O}(\mathbb{C}P^{n-1}_q)\subseteq {\mathcal O}(S^{2n-1}_q)$ on the quantum projective space and show how to get an antipode on the bialgebroid out of the $K$-theory of the base algebra ${\mathcal O}(\mathbb{C}P^{n-1}_q)$.

Hopf algebroids and twists for quantum projective spaces

Landi, Giovanni;
2024-01-01

Abstract

We study the relationship between antipodes on a Hopf algebroid \sr{$\mathcal{H}$} in the sense of B\"ohm--Szlachanyi and the group of twists that lies inside the associated convolution algebra \sr{$\mathcal{H}^*$}. We specialize to the case of a faithfully flat $H$-Hopf--Galois extensions $B\subseteq A$ and related Ehresmann--Schauenburg bialgebroid. In particular, we find that the twists are in one-to-one correspondence with $H$-comodule algebra automorphism of $A$. We work out in detail the $U(1)$-extension ${\mathcal O}(\mathbb{C}P^{n-1}_q)\subseteq {\mathcal O}(S^{2n-1}_q)$ on the quantum projective space and show how to get an antipode on the bialgebroid out of the $K$-theory of the base algebra ${\mathcal O}(\mathbb{C}P^{n-1}_q)$.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021869324002278-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 467.75 kB
Formato Adobe PDF
467.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3076118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact