Logging-while-drilling (LWD) borehole images are very important data to support formation characterization and drilling operations. The manual interpretation of this data is a time-consuming task, limited by inconsistencies and uncertainties. We propose a deep-learning (DL)- based supervised method to automatically correlate geological features in low-resolution LWD image logs. Additionally, we tested two learning strategies, namely standard learning (SL) and curriculum learning (CL), to critically analyze the differences in the application on both synthetic and field data. Our results show that these DL models can effectively replace manual labor in dip picking but highlight the need for human intervention to validate and classify the correlated features, proving the utility of the semi-automatic paradigm.
Efficient Logging-While-Drilling Image Logs Interpretation Using Deep Learning
Attilio Molossi
;Giacomo Roncoroni;Michele Pipan
2024-01-01
Abstract
Logging-while-drilling (LWD) borehole images are very important data to support formation characterization and drilling operations. The manual interpretation of this data is a time-consuming task, limited by inconsistencies and uncertainties. We propose a deep-learning (DL)- based supervised method to automatically correlate geological features in low-resolution LWD image logs. Additionally, we tested two learning strategies, namely standard learning (SL) and curriculum learning (CL), to critically analyze the differences in the application on both synthetic and field data. Our results show that these DL models can effectively replace manual labor in dip picking but highlight the need for human intervention to validate and classify the correlated features, proving the utility of the semi-automatic paradigm.File | Dimensione | Formato | |
---|---|---|---|
PJV65N3-2024a5 (1).pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
7.38 MB
Formato
Adobe PDF
|
7.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.