Effective treatment of infectious diseases requires prompt and accurate bacterial identifi cation and tailored antimicrobial treatments. Traditional culture methods are considered the gold standard, but their effectiveness diminishes for fastidious and hard-to-grow microorganisms. In recent years, molecular diagnostic tools such as 16S rRNA gene next-generation sequencing (16S NGS) have gained popularity in the field. We analysed data from samples submitted for 16S NGS between July 2022 and July 2023 at the Department of Advanced Translational Microbiology in Trieste, Italy. The study included samples submitted for both culture-based identification and 16S NGS. Conventional media were used for culture, and bacterial identification was performed using MALDI-TOF mass spectrometry. The V3 region of the 16S rRNA gene was sequenced using the Ion PGM platform. Among the 123 samples submitted, drainage fluids (38%) and blood (23%) were the most common, with requests predominantly from the Infectious Diseases (31.7%) and Orthopedic (21.13%) Units. In samples collected from patients with confirmed infections, 16S NGS demonstrated diagnostic utility in over 60% of cases, either by confirming culture results in 21% or providing enhanced detection in 40% of instances. Among the 71 patients who had received antibiotic therapies before sampling (mean 2.3 prior antibiotic days), pre-sampling antibiotic consumption did not significantly affect the sensitivity of 16S NGS. In routine microbiology laboratories, combining 16S NGS with culture method enhances the sensitivity of microbiological diagnostics, even when sampling is conducted during antibiotic therapy.

Performance of 16S rRNA Gene Next-Generation Sequencing and the Culture Method in the Detection of Bacteria in Clinical Specimens

Campisciano, Giuseppina;Di Bella, Stefano;Simonetti, Omar;Busetti, Marina;Luzzati, Roberto;Comar, Manola
2024-01-01

Abstract

Effective treatment of infectious diseases requires prompt and accurate bacterial identifi cation and tailored antimicrobial treatments. Traditional culture methods are considered the gold standard, but their effectiveness diminishes for fastidious and hard-to-grow microorganisms. In recent years, molecular diagnostic tools such as 16S rRNA gene next-generation sequencing (16S NGS) have gained popularity in the field. We analysed data from samples submitted for 16S NGS between July 2022 and July 2023 at the Department of Advanced Translational Microbiology in Trieste, Italy. The study included samples submitted for both culture-based identification and 16S NGS. Conventional media were used for culture, and bacterial identification was performed using MALDI-TOF mass spectrometry. The V3 region of the 16S rRNA gene was sequenced using the Ion PGM platform. Among the 123 samples submitted, drainage fluids (38%) and blood (23%) were the most common, with requests predominantly from the Infectious Diseases (31.7%) and Orthopedic (21.13%) Units. In samples collected from patients with confirmed infections, 16S NGS demonstrated diagnostic utility in over 60% of cases, either by confirming culture results in 21% or providing enhanced detection in 40% of instances. Among the 71 patients who had received antibiotic therapies before sampling (mean 2.3 prior antibiotic days), pre-sampling antibiotic consumption did not significantly affect the sensitivity of 16S NGS. In routine microbiology laboratories, combining 16S NGS with culture method enhances the sensitivity of microbiological diagnostics, even when sampling is conducted during antibiotic therapy.
File in questo prodotto:
File Dimensione Formato  
BOTAN D 2024 16S rRNA.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3079698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact