In bone regeneration, combining natural polymer-based scaffolds with Bioactive Glasses (BGs) is an attractive strategy to improve the mechanical properties of the structure, as well as its bioactivity and regenerative potential. Methods: For this purpose, a well-studied alginate/hydroxyapatite (Alg/HAp) porous scaffold was enhanced with an experimental bioglass (BGMS10), characterized by a high crystallization temperature and containing therapeutic ions such as strontium and magnesium. This resulted in an improved biological response compared to 45S5 Bioglass®, the “gold” standard among BGs. Porous composite scaffolds were fabricated by freeze-drying technique and characterized by scanning electron microscopy and microanalysis, infrared spectroscopy, and microcomputed tomography. The mechanical properties and cytocompatibility of the new scaffold composition were also evaluated. The addition of bioglass to the Alg/HAp network resulted in a slightly lower porosity. However, despite the change in pore size, the MG-63 cells were able to better adhere and proliferate when cultured for one week on a BG scaffold compared to the control Alg/HAp scaffolds. Thus, our findings indicate that the combination of bioactive glass BGMS10 does not affect the structural and physicochemical properties of the Alg/HAp scaffold and confers bioactive properties to the structures, making the Alg/HAp-BGMS10 scaffold a promising candidate for future application in bone tissue regeneration.

Alginate-Sr/Mg Containing Bioactive Glass Scaffolds: The Characterization of a New 3D Composite for Bone Tissue Engineering

Guagnini, Benedetta
Primo
;
Medagli, Barbara
Secondo
;
Zumbo, Bianca;Turco, Gianluca;Porrelli, Davide
;
2024-01-01

Abstract

In bone regeneration, combining natural polymer-based scaffolds with Bioactive Glasses (BGs) is an attractive strategy to improve the mechanical properties of the structure, as well as its bioactivity and regenerative potential. Methods: For this purpose, a well-studied alginate/hydroxyapatite (Alg/HAp) porous scaffold was enhanced with an experimental bioglass (BGMS10), characterized by a high crystallization temperature and containing therapeutic ions such as strontium and magnesium. This resulted in an improved biological response compared to 45S5 Bioglass®, the “gold” standard among BGs. Porous composite scaffolds were fabricated by freeze-drying technique and characterized by scanning electron microscopy and microanalysis, infrared spectroscopy, and microcomputed tomography. The mechanical properties and cytocompatibility of the new scaffold composition were also evaluated. The addition of bioglass to the Alg/HAp network resulted in a slightly lower porosity. However, despite the change in pore size, the MG-63 cells were able to better adhere and proliferate when cultured for one week on a BG scaffold compared to the control Alg/HAp scaffolds. Thus, our findings indicate that the combination of bioactive glass BGMS10 does not affect the structural and physicochemical properties of the Alg/HAp scaffold and confers bioactive properties to the structures, making the Alg/HAp-BGMS10 scaffold a promising candidate for future application in bone tissue regeneration.
2024
2-lug-2024
Pubblicato
File in questo prodotto:
File Dimensione Formato  
Guagnini et al 2024 J Funct Biomater.pdf

accesso aperto

Descrizione: lavoro principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri
Guagnini et al J Funct Biomater SI.pdf

accesso aperto

Descrizione: supplementary material
Tipologia: Altro materiale allegato
Licenza: Digital Rights Management non definito
Dimensione 815.86 kB
Formato Adobe PDF
815.86 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3081099
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact