A comprehensive study on adjusting the morphology of sputter-deposited platinum was performed. Platinum was deposited under various Ar pressure ranging from 0.3 to 3.2 Pa using a conventional magnetron system as well as at 57 Pa using a gas aggregation cluster source integrated into the magnetron sputtering system. The morphology and structure of deposited layers were characterized with a broad portfolio of characterization techniques such as scanning electron microscopy, transmission electron microscopy, grazing incidence small angle X-ray scattering and X-ray diffraction. The results revealed a continuous evolution of the Pt layer morphology from a thin-film like layer of tightly packed Pt nanoparticles to a deposit composed of dispersed particles of 5-7 nm in size as the Ar pressure increased. The electrochemically active surface area of deposited Pt, as calculated from cyclic voltammograms, increased with deposition pressure from 11.7 m2⋅gPt-1 to 22.3 m2⋅gPt-1 and 24 m2⋅gPt-1 for Pt deposited at 0.3, 3.2 and 57 Pa, respectively. This increase in active sites was reflected in a significant improvement in the mass activity of platinum exemplary confirmed using a methanol electrooxidation reaction.

Tuning the morphology of sputter-deposited platinum catalyst: From compact layers to dispersed nanoparticles

Marco Bogar
Data Curation
;
Rodolfo Taccani;
2023-01-01

Abstract

A comprehensive study on adjusting the morphology of sputter-deposited platinum was performed. Platinum was deposited under various Ar pressure ranging from 0.3 to 3.2 Pa using a conventional magnetron system as well as at 57 Pa using a gas aggregation cluster source integrated into the magnetron sputtering system. The morphology and structure of deposited layers were characterized with a broad portfolio of characterization techniques such as scanning electron microscopy, transmission electron microscopy, grazing incidence small angle X-ray scattering and X-ray diffraction. The results revealed a continuous evolution of the Pt layer morphology from a thin-film like layer of tightly packed Pt nanoparticles to a deposit composed of dispersed particles of 5-7 nm in size as the Ar pressure increased. The electrochemically active surface area of deposited Pt, as calculated from cyclic voltammograms, increased with deposition pressure from 11.7 m2⋅gPt-1 to 22.3 m2⋅gPt-1 and 24 m2⋅gPt-1 for Pt deposited at 0.3, 3.2 and 57 Pa, respectively. This increase in active sites was reflected in a significant improvement in the mass activity of platinum exemplary confirmed using a methanol electrooxidation reaction.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2468023023004492-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 3.66 MB
Formato Adobe PDF
3.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S2468023023004492-main-Post_print.pdf

Open Access dal 17/06/2024

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 4.03 MB
Formato Adobe PDF
4.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3082699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact