Climate warming is altering snowpack permanence in alpine tundra, modifying shrub growth and distribution. Plant acclimation to snowpack changes depends on the capability to guarantee growth and carbon storage, suggesting that the content of non-structural carbohydrates (NSC) in plant organs can be a key trait to depict the plant response under different snow regimes. To test this hypothesis, we designed a 3-years long manipulative experiment aimed at evaluating the effect of snow melt timing (i.e., early, control, and late) on NSC content in needles, bark and wood of Juniperus communis L. growing at high elevation in the Alps. Starch evidenced a general decrease from late spring to summer in control and early melting, while starch was low but stable in plants subjected to a late snow melt. Leaves, bark and wood have different level of soluble NSC changing during growing season: in bark, sugars content decreased significantly in late summer, while there was no seasonal effect in needles and wood. Soluble NSC and starch were differently related with the plant growth, when considering different tissues and snow treatment. In leaf and bark we observed a starch depletion in control and early melting plants, consistently to a higher growth (i.e., twig elongation), while in late snow melt, we did not find any significant relationship between growth and NSC concentration. Our findings confirmed that snowpack duration affects the onset of the growing season promoting a change in carbon allocation in plant organs and, between bark and wood in twigs. Finally, our results suggest that plants, at this elevation, could take advantage from an early snow melt caused by climate warming, most likely due to photosynthetic activity by maintaining the level of reserves and enhancing the carbon investment for growth.

Snowpack permanence shapes the growth and dynamic of non-structural carbohydrates in Juniperus communis in alpine tundra

Gargiulo, Sara
Primo
;
Casolo, Valentino
Ultimo
2024-01-01

Abstract

Climate warming is altering snowpack permanence in alpine tundra, modifying shrub growth and distribution. Plant acclimation to snowpack changes depends on the capability to guarantee growth and carbon storage, suggesting that the content of non-structural carbohydrates (NSC) in plant organs can be a key trait to depict the plant response under different snow regimes. To test this hypothesis, we designed a 3-years long manipulative experiment aimed at evaluating the effect of snow melt timing (i.e., early, control, and late) on NSC content in needles, bark and wood of Juniperus communis L. growing at high elevation in the Alps. Starch evidenced a general decrease from late spring to summer in control and early melting, while starch was low but stable in plants subjected to a late snow melt. Leaves, bark and wood have different level of soluble NSC changing during growing season: in bark, sugars content decreased significantly in late summer, while there was no seasonal effect in needles and wood. Soluble NSC and starch were differently related with the plant growth, when considering different tissues and snow treatment. In leaf and bark we observed a starch depletion in control and early melting plants, consistently to a higher growth (i.e., twig elongation), while in late snow melt, we did not find any significant relationship between growth and NSC concentration. Our findings confirmed that snowpack duration affects the onset of the growing season promoting a change in carbon allocation in plant organs and, between bark and wood in twigs. Finally, our results suggest that plants, at this elevation, could take advantage from an early snow melt caused by climate warming, most likely due to photosynthetic activity by maintaining the level of reserves and enhancing the carbon investment for growth.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0048969724050411-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3084158
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact