Multiple energy bin spectral micro-CT (S𝜇CT) is an advanced imaging technique that allows multi-material decomposition according to their specific absorption patterns at a sub-100 μm scale. Typically, iodine is the preferred CT contrast agent for cardiovascular imaging, while gold nanoparticles have gained attention in recent years owing to their high absorption properties, biocompatibility and ability to target tumors. In this work, we demonstrate the potential for multi-material decomposition through S𝜇CT imaging of a test sample at the PEPI lab of INFN Trieste. The sample, consisting of gold, iodine, calcium, and water, was imaged using a Pixirad1/PixieIII chromatic detector with multiple energy thresholds and a wide spectrum (100 kV) produced by a micro-focus X-ray tube. The results demonstrate the simultaneous detection and separation of the four materials at a spatial scale of 35 μm, suggesting the potential of this technique in improving material detectability and quantification in a range of pre-clinical applications, including cardiovascular and oncologic imaging.
Spectral micro-CT for simultaneous gold and iodine detection, and multi-material identification
Perion, P.
Primo
;Arfelli, F.;Brombal, L.Ultimo
2024-01-01
Abstract
Multiple energy bin spectral micro-CT (S𝜇CT) is an advanced imaging technique that allows multi-material decomposition according to their specific absorption patterns at a sub-100 μm scale. Typically, iodine is the preferred CT contrast agent for cardiovascular imaging, while gold nanoparticles have gained attention in recent years owing to their high absorption properties, biocompatibility and ability to target tumors. In this work, we demonstrate the potential for multi-material decomposition through S𝜇CT imaging of a test sample at the PEPI lab of INFN Trieste. The sample, consisting of gold, iodine, calcium, and water, was imaged using a Pixirad1/PixieIII chromatic detector with multiple energy thresholds and a wide spectrum (100 kV) produced by a micro-focus X-ray tube. The results demonstrate the simultaneous detection and separation of the four materials at a spatial scale of 35 μm, suggesting the potential of this technique in improving material detectability and quantification in a range of pre-clinical applications, including cardiovascular and oncologic imaging.File | Dimensione | Formato | |
---|---|---|---|
Perion_2024_J._Inst._19_C04023_compressed.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.