Phenanthrene is a high-value raw material in chemical industries. Separation of phenanthrene from isomeric anthracene continues to be a big challenge in the industry due to their very similar physical properties. Herein, we report the self-assembly of a water-soluble molecular bowl (TB) from a phenothiazine-based unsymmetrical terapyridyl ligand (L) and a cis-blocked 90° Pd(II) acceptor. TB featured an unusual bowl-like topology, with a wide rim diameter and a hydrophobic inner cavity fenced by the aromatic rings of the ligand. The above-mentioned features of TB allow it to bind polyaromatic hydrocarbons in its confined cavity. TB shows a higher affinity for phenanthrene over its isomer anthracene in water, which enables it to separate phenanthrene with ∼93% purity from an equimolar mixture of phenanthrene and anthracene. TB is also able to extract pyrene with around ∼90% purity from an equimolar mixture of coronene, perylene, and pyrene. Moreover, TB can be reused for several cycles without significant degradation in its performance as an extracting agent. This clean strategy of separation of phenanthrene and pyrene from a mixture of hydrophobic hydrocarbons by aqueous extraction is noteworthy.

Water-Soluble Pd6L3 Molecular Bowl for Separation of Phenanthrene from a Mixture of Isomeric Aromatic Hydrocarbons

Hickey N.;
2023-01-01

Abstract

Phenanthrene is a high-value raw material in chemical industries. Separation of phenanthrene from isomeric anthracene continues to be a big challenge in the industry due to their very similar physical properties. Herein, we report the self-assembly of a water-soluble molecular bowl (TB) from a phenothiazine-based unsymmetrical terapyridyl ligand (L) and a cis-blocked 90° Pd(II) acceptor. TB featured an unusual bowl-like topology, with a wide rim diameter and a hydrophobic inner cavity fenced by the aromatic rings of the ligand. The above-mentioned features of TB allow it to bind polyaromatic hydrocarbons in its confined cavity. TB shows a higher affinity for phenanthrene over its isomer anthracene in water, which enables it to separate phenanthrene with ∼93% purity from an equimolar mixture of phenanthrene and anthracene. TB is also able to extract pyrene with around ∼90% purity from an equimolar mixture of coronene, perylene, and pyrene. Moreover, TB can be reused for several cycles without significant degradation in its performance as an extracting agent. This clean strategy of separation of phenanthrene and pyrene from a mixture of hydrophobic hydrocarbons by aqueous extraction is noteworthy.
2023
1-giu-2023
Pubblicato
File in questo prodotto:
File Dimensione Formato  
acs.inorgchem.3c01156.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 4.42 MB
Formato Adobe PDF
4.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3085418
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact