In the framework of a model for the quasistatic crack growth in pressure-sensitive elasto-plastic materials in the planar case, we study the properties of the length ℓ(t) of the crack as a function of time. We prove that, under suitable technical assumptions on the crack path, the monotone function ℓ is a pure jump function.
On the pure jump nature of crack growth for a class of pressure-sensitive elasto-plastic materials
Toader R.
2022-01-01
Abstract
In the framework of a model for the quasistatic crack growth in pressure-sensitive elasto-plastic materials in the planar case, we study the properties of the length ℓ(t) of the crack as a function of time. We prove that, under suitable technical assumptions on the crack path, the monotone function ℓ is a pure jump function.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
DM-Toa-NA.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
DM-Toa-NA-Post_print.pdf
Open Access dal 14/08/2022
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


