We use Dark Energy Survey Year 3 (DES Y3) clusters with archival XMM–Newton and Chandra X-ray data to assess the centring performance of the redMaPPer cluster finder and to measure key richness observable scaling relations. We find that 10–20 per cent of redMaPPer clusters are miscentred, both when comparing to the X-ray peak position and to the visually identified central cluster galaxy. We find no significant difference in miscentring in bins of low versus high richness or redshift. The dominant reasons for miscentring include masked or missing data and the presence of other bright galaxies in the cluster. For half of the miscentred clusters, the correct central was one of the possible centrals identified by redMaPPer, while for ∼40 per cent of miscentred clusters, the correct central is not a redMaPPer member mostly due to masking. Additionally, we fit scaling relations of X-ray temperature and luminosity with richness. We find a TX–λ scatter of 0.21 ± 0.01. While the scatter in TX–λ is consistent in redshift bins, we find modestly different slopes, with high-redshift clusters displaying a somewhat shallower relation. Splitting based on richness, we find a marginally larger scatter for our lowest richness bin, 20 < λ < 40. We note that the robustness of the scaling relations at lower richnesses is limited by the unknown selection function, but at λ > 75, we detect nearly all of the clusters falling within existing X-ray pointings. The X-ray properties of detected, serendipitous clusters are generally consistent with those of targeted clusters.

Dark energy survey year 3 results: miscentring calibration and X-ray-richness scaling relations in redMaPPer clusters

Costanzi M.;
2024-01-01

Abstract

We use Dark Energy Survey Year 3 (DES Y3) clusters with archival XMM–Newton and Chandra X-ray data to assess the centring performance of the redMaPPer cluster finder and to measure key richness observable scaling relations. We find that 10–20 per cent of redMaPPer clusters are miscentred, both when comparing to the X-ray peak position and to the visually identified central cluster galaxy. We find no significant difference in miscentring in bins of low versus high richness or redshift. The dominant reasons for miscentring include masked or missing data and the presence of other bright galaxies in the cluster. For half of the miscentred clusters, the correct central was one of the possible centrals identified by redMaPPer, while for ∼40 per cent of miscentred clusters, the correct central is not a redMaPPer member mostly due to masking. Additionally, we fit scaling relations of X-ray temperature and luminosity with richness. We find a TX–λ scatter of 0.21 ± 0.01. While the scatter in TX–λ is consistent in redshift bins, we find modestly different slopes, with high-redshift clusters displaying a somewhat shallower relation. Splitting based on richness, we find a marginally larger scatter for our lowest richness bin, 20 < λ < 40. We note that the robustness of the scaling relations at lower richnesses is limited by the unknown selection function, but at λ > 75, we detect nearly all of the clusters falling within existing X-ray pointings. The X-ray properties of detected, serendipitous clusters are generally consistent with those of targeted clusters.
File in questo prodotto:
File Dimensione Formato  
stae1786.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3086700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact