In this paper, we present the repercussions of Padmanabhan's propagator in electrodynamics. This corresponds to implement T-duality effects in a U(1) gauge theory. By formulating a nonlocal action consistent with the above hypothesis, we derive the profile of static potentials between electric charges via a path integral approach. Interestingly, the Coulomb potential results regularized by a length scale proportional to the parameter (α′)1/2. Accordingly, fields are vanishing at the origin. We also discuss an array of experimental testbeds to expose the above results. It is interesting to observe that T-duality generates an effect of dimensional fractalization, that resembles similar phenomena in fractional electromagnetism. Finally, our results have also been derived with a gauge-invariant method, as a necessary check of consistency for any non-Maxwellian theory.
Finite electrodynamics from T-duality
Nicolini P.
Co-primo
2022-01-01
Abstract
In this paper, we present the repercussions of Padmanabhan's propagator in electrodynamics. This corresponds to implement T-duality effects in a U(1) gauge theory. By formulating a nonlocal action consistent with the above hypothesis, we derive the profile of static potentials between electric charges via a path integral approach. Interestingly, the Coulomb potential results regularized by a length scale proportional to the parameter (α′)1/2. Accordingly, fields are vanishing at the origin. We also discuss an array of experimental testbeds to expose the above results. It is interesting to observe that T-duality generates an effect of dimensional fractalization, that resembles similar phenomena in fractional electromagnetism. Finally, our results have also been derived with a gauge-invariant method, as a necessary check of consistency for any non-Maxwellian theory.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0370269322002349-main.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
346.68 kB
Formato
Adobe PDF
|
346.68 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.