We extend the result of Kowalczyk, Martel, and Muñoz [J. Eur. Math. Soc. (JEMS), 24 (2022), pp. 2133–2167] on the existence, in the context of spatially even solutions, of asymptotic stability on a center hypersurface at the soliton of the defocusing power nonlinear Klein–Gordon equation with , to the case . The result is attained performing new and refined estimates that allow us to close the argument for power law in the range .
On Asymptotic Stability on a Center Hypersurface at the Soliton for Even Solutions of the Nonlinear Klein–Gordon Equation When \(\boldsymbol{2 \ge p \gt \frac{5}{3}}\)
Scipio CuccagnaPrimo
;Masaya MaedaSecondo
;Federico MurgantePenultimo
;Stefano Scrobogna
Ultimo
2024-01-01
Abstract
We extend the result of Kowalczyk, Martel, and Muñoz [J. Eur. Math. Soc. (JEMS), 24 (2022), pp. 2133–2167] on the existence, in the context of spatially even solutions, of asymptotic stability on a center hypersurface at the soliton of the defocusing power nonlinear Klein–Gordon equation with , to the case . The result is attained performing new and refined estimates that allow us to close the argument for power law in the range .File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
SIAM2024.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
604.2 kB
Formato
Adobe PDF
|
604.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
SIAM2024-Post_print.pdf
accesso aperto
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.