We extend the result of Kowalczyk, Martel, and Muñoz [J. Eur. Math. Soc. (JEMS), 24 (2022), pp. 2133–2167] on the existence, in the context of spatially even solutions, of asymptotic stability on a center hypersurface at the soliton of the defocusing power nonlinear Klein–Gordon equation with , to the case . The result is attained performing new and refined estimates that allow us to close the argument for power law in the range .

On Asymptotic Stability on a Center Hypersurface at the Soliton for Even Solutions of the Nonlinear Klein–Gordon Equation When \(\boldsymbol{2 \ge p \gt \frac{5}{3}}\)

Scipio Cuccagna
Primo
;
Masaya Maeda
Secondo
;
Federico Murgante
Penultimo
;
Stefano Scrobogna
Ultimo
2024-01-01

Abstract

We extend the result of Kowalczyk, Martel, and Muñoz [J. Eur. Math. Soc. (JEMS), 24 (2022), pp. 2133–2167] on the existence, in the context of spatially even solutions, of asymptotic stability on a center hypersurface at the soliton of the defocusing power nonlinear Klein–Gordon equation with , to the case . The result is attained performing new and refined estimates that allow us to close the argument for power law in the range .
2024
1-ago-2024
Pubblicato
File in questo prodotto:
File Dimensione Formato  
SIAM2024.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 604.2 kB
Formato Adobe PDF
604.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
SIAM2024-Post_print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3086824
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact