Photoelectrochemical (PEC) cells using colloidal quantum dots (QDs) as sensitizers are promising for efficient hydrogen (H2) production, due to their low cost and to the size/shape/composition dependent optoelectronic properties of QDs. However, QDs that are typically used in PEC cell fabrication contain highly toxic heavy metals (e.g. Pb and Cd) cations, that limit commercial-scale applications. Herein, we synthesized eco-friendly Cu doped Zn-In-Se colloidal QDs and used them in PEC cells to efficiently produce H2 from water. PEC cells fabricated with optimized Cu (5%) doped Zn-In-Se (Zn:In=1:4) QDs/TiO2 photoanodes yield an unprecedented saturated photocurrent density of 11.23 mA cm−2 at 0.8 V vs. RHE under one sun illumination (AM 1.5, 100 mW·cm−2) and maintain ~60% of the initial photocurrent density value after 6000 s continuous illumination by using Na2S/Na2SO3 as hole scavenger. This new record value of photocurrent density from eco-friendly QDs based PEC cell demonstrates that an optimized amount of Cu dopant and Zn:In ratio significantly improves light absorption, carrier injection rates/lifetime and the spatial separation of electron-hole pairs. Our work indicates that Cu doped Zn-In-Se QDs can be used as efficient light harvesters to realize high efficiency, inexpensive and environmentally friendly solar-driven production of chemical fuels and other optoelectronic devices.
High efficiency photoelectrochemical hydrogen generation using eco-friendly Cu doped Zn-In-Se colloidal quantum dots
Rosei, Federico
2021-01-01
Abstract
Photoelectrochemical (PEC) cells using colloidal quantum dots (QDs) as sensitizers are promising for efficient hydrogen (H2) production, due to their low cost and to the size/shape/composition dependent optoelectronic properties of QDs. However, QDs that are typically used in PEC cell fabrication contain highly toxic heavy metals (e.g. Pb and Cd) cations, that limit commercial-scale applications. Herein, we synthesized eco-friendly Cu doped Zn-In-Se colloidal QDs and used them in PEC cells to efficiently produce H2 from water. PEC cells fabricated with optimized Cu (5%) doped Zn-In-Se (Zn:In=1:4) QDs/TiO2 photoanodes yield an unprecedented saturated photocurrent density of 11.23 mA cm−2 at 0.8 V vs. RHE under one sun illumination (AM 1.5, 100 mW·cm−2) and maintain ~60% of the initial photocurrent density value after 6000 s continuous illumination by using Na2S/Na2SO3 as hole scavenger. This new record value of photocurrent density from eco-friendly QDs based PEC cell demonstrates that an optimized amount of Cu dopant and Zn:In ratio significantly improves light absorption, carrier injection rates/lifetime and the spatial separation of electron-hole pairs. Our work indicates that Cu doped Zn-In-Se QDs can be used as efficient light harvesters to realize high efficiency, inexpensive and environmentally friendly solar-driven production of chemical fuels and other optoelectronic devices.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


