Survivability of damaged ships, especially ro-ro/passenger (ropax) vessels, is of paramount interest. Nowadays, time-domain simulation of flooding and motions of damaged ships are more frequently performed to obtain a more realistic overview of the actual survivability in case of a flooding accident. An international benchmark study on simulation of flooding and motions of damaged ropax vessels was conducted within the EU Horizon 2020 project FLARE, using new dedicated model tests as a reference. The test cases include transient flooding in both calm water and in irregular beam seas, as well as gradual flooding and capsizing in beam seas. The studied damage case is a two-compartment collision damage, and the studied intact metacentric height values were lower than the statutory requirements to achieve also capsize cases. Numerical results were carefully compared against measurement data from the model tests. In transient flooding cases the capsize conditions were generally detected well by most codes. However, much variation was observed in the internal flooding and capsize mechanisms. For gradual flooding in beam seas, the results for capsize rate and time-to-capsize were characterized by significant variability among the codes. Results indicate that more research is needed to further improve the time-domain flooding simulation methods to correctly capture both transient flooding phenomena and motions of damaged ship in high waves.

Results of an international benchmark study on numerical simulation of flooding and motions of a damaged ropax ship

Mauro F.;
2022-01-01

Abstract

Survivability of damaged ships, especially ro-ro/passenger (ropax) vessels, is of paramount interest. Nowadays, time-domain simulation of flooding and motions of damaged ships are more frequently performed to obtain a more realistic overview of the actual survivability in case of a flooding accident. An international benchmark study on simulation of flooding and motions of damaged ropax vessels was conducted within the EU Horizon 2020 project FLARE, using new dedicated model tests as a reference. The test cases include transient flooding in both calm water and in irregular beam seas, as well as gradual flooding and capsizing in beam seas. The studied damage case is a two-compartment collision damage, and the studied intact metacentric height values were lower than the statutory requirements to achieve also capsize cases. Numerical results were carefully compared against measurement data from the model tests. In transient flooding cases the capsize conditions were generally detected well by most codes. However, much variation was observed in the internal flooding and capsize mechanisms. For gradual flooding in beam seas, the results for capsize rate and time-to-capsize were characterized by significant variability among the codes. Results indicate that more research is needed to further improve the time-domain flooding simulation methods to correctly capture both transient flooding phenomena and motions of damaged ship in high waves.
File in questo prodotto:
File Dimensione Formato  
APOR_103153_Ruponen_Mauro_2022.pdf

accesso aperto

Descrizione: Published version
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 17.38 MB
Formato Adobe PDF
17.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3093623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact