The first measurements of K∗(892)0 resonance production as a function of charged-particle multiplicity in Xe-Xe collisions at √sNN = 5.44 TeV and pp collisions at√s = 5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity (|y| < 0.5) using the hadronic decay channel K∗0 → K±π∓. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of K∗0, and yield ratios of resonance to stable hadron (K∗0/K) are compared across different collision systems (pp, p-Pb, Xe-Xe, and Pb-Pb) at similar collision energies to investigate how the production of K∗0 resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of K∗0 in Xe-Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using the hadron resonance gas–partial chemical equilibrium model.

System-size dependence of the hadronic rescattering effect at energies available at the CERN Large Hadron Collider

Camerini, P.;Contin, G.;De Martin, C.;Fragiacomo, E.;Luparello, G.;Margagliotti, G. V.;Piano, S.;Rui, R.;Suljic, M.;Villani, A.;Zaccolo, V.;
2024-01-01

Abstract

The first measurements of K∗(892)0 resonance production as a function of charged-particle multiplicity in Xe-Xe collisions at √sNN = 5.44 TeV and pp collisions at√s = 5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity (|y| < 0.5) using the hadronic decay channel K∗0 → K±π∓. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of K∗0, and yield ratios of resonance to stable hadron (K∗0/K) are compared across different collision systems (pp, p-Pb, Xe-Xe, and Pb-Pb) at similar collision energies to investigate how the production of K∗0 resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of K∗0 in Xe-Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using the hadron resonance gas–partial chemical equilibrium model.
File in questo prodotto:
File Dimensione Formato  
PRC_109(2024)014911_1-18.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3094481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact