: Haemodynamic forces (HDFs), which represent the forces exchanged between blood and surrounding tissues, are critical in regulating the structure and function of the left ventricle (LV). These forces can be assessed on cardiac magnetic resonance or transthoracic echocardiography exams using specialized software, offering a non-invasive alternative for measuring intraventricular pressure gradients. The analysis of HDFs can be a valuable tool in improving our understanding of cardiovascular disease and providing insights beyond traditional diagnostic and therapeutic approaches. For instance, HDF analysis has the potential to identify early signs of adverse remodelling and cardiac dysfunction, which may not be detected by standard imaging methods such as bidimensional or speckle-tracking echocardiography. This review aims to summarize the principles of HDF analysis and to reappraise its possible applications to cardiac disorders.

Assessing cardiac mechanics through left ventricular haemodynamic forces

Gianni Pedrizzetti;
2024-01-01

Abstract

: Haemodynamic forces (HDFs), which represent the forces exchanged between blood and surrounding tissues, are critical in regulating the structure and function of the left ventricle (LV). These forces can be assessed on cardiac magnetic resonance or transthoracic echocardiography exams using specialized software, offering a non-invasive alternative for measuring intraventricular pressure gradients. The analysis of HDFs can be a valuable tool in improving our understanding of cardiovascular disease and providing insights beyond traditional diagnostic and therapeutic approaches. For instance, HDF analysis has the potential to identify early signs of adverse remodelling and cardiac dysfunction, which may not be detected by standard imaging methods such as bidimensional or speckle-tracking echocardiography. This review aims to summarize the principles of HDF analysis and to reappraise its possible applications to cardiac disorders.
File in questo prodotto:
File Dimensione Formato  
2024EHJimp.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3096386
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact