This paper deals with the computation of the two parameter Mittag-Leffler function of operators by exploiting its Stieltjes integral representation and then by using a single exponential transform together with the sinc rule. Whenever the parameters of the function do not allow this representation, we resort to the Dunford-Taylor one. The error analysis is kept in the framework of unbounded accretive operators in order to make it a useful tool for the solution of fractional differential equations. The theory is also used to design a rational Krylov method.

On the computation of the Mittag-Leffler function of fractional powers of accretive operators

Denich, Eleonora
Primo
;
Novati, Paolo
Ultimo
2024-01-01

Abstract

This paper deals with the computation of the two parameter Mittag-Leffler function of operators by exploiting its Stieltjes integral representation and then by using a single exponential transform together with the sinc rule. Whenever the parameters of the function do not allow this representation, we resort to the Dunford-Taylor one. The error analysis is kept in the framework of unbounded accretive operators in order to make it a useful tool for the solution of fractional differential equations. The theory is also used to design a rational Krylov method.
File in questo prodotto:
File Dimensione Formato  
s13540-024-00349-2.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 628.18 kB
Formato Adobe PDF
628.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3096620
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact