The realtime program for high-energy neutrino track events detected by the IceCube South Pole Neutrino Observatory releases alerts to the astronomical community with the goal of identifying electromagnetic counterparts to astrophysical neutrinos. Gamma-ray observations from the Fermi-Large Area Telescope (LAT) enabled the identification of the flaring gamma-ray blazar TXS 0506+056 as a likely counterpart to the neutrino event IC-170922A. By continuously monitoring the gamma-ray sky, Fermi-LAT plays a key role in the identification of candidate counterparts to realtime neutrino alerts. In this paper, we present the Fermi-LAT strategy for following up high-energy neutrino alerts applied to seven years of IceCube data. Right after receiving an alert, a search is performed in order to identify gamma-ray activity from known and newly detected sources that are positionally consistent with the neutrino localization. In this work, we study the population of blazars found in coincidence with high-energy neutrinos and compare them to the full population of gamma-ray blazars detected by Fermi-LAT. We also evaluate the relationship between the neutrino and gamma-ray luminosities, finding different trends between the two blazar classes BL Lacs and flat-spectrum radio quasars.

Fermi-LAT follow-up observations in seven years of real-Time high-energy neutrino alerts

Bartolini C.;Principe G.;
2024-01-01

Abstract

The realtime program for high-energy neutrino track events detected by the IceCube South Pole Neutrino Observatory releases alerts to the astronomical community with the goal of identifying electromagnetic counterparts to astrophysical neutrinos. Gamma-ray observations from the Fermi-Large Area Telescope (LAT) enabled the identification of the flaring gamma-ray blazar TXS 0506+056 as a likely counterpart to the neutrino event IC-170922A. By continuously monitoring the gamma-ray sky, Fermi-LAT plays a key role in the identification of candidate counterparts to realtime neutrino alerts. In this paper, we present the Fermi-LAT strategy for following up high-energy neutrino alerts applied to seven years of IceCube data. Right after receiving an alert, a search is performed in order to identify gamma-ray activity from known and newly detected sources that are positionally consistent with the neutrino localization. In this work, we study the population of blazars found in coincidence with high-energy neutrinos and compare them to the full population of gamma-ray blazars detected by Fermi-LAT. We also evaluate the relationship between the neutrino and gamma-ray luminosities, finding different trends between the two blazar classes BL Lacs and flat-spectrum radio quasars.
File in questo prodotto:
File Dimensione Formato  
aa49221-24.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3096741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact