The urgent need for antibiotic alternatives has driven the search for antimicrobial peptides (AMPs) from many different sources, yet parasite-derived AMPs remain underexplored. In this study, three novel potential AMP precursors (mesco-1, -2 and -3) were identified in the parasitic flatworm Mesocestoides corti, via a genome-wide mining approach, and the most promising one, mesco-2, was synthesized and comprehensively characterized. It showed potent broad-spectrum antibacterial activity at submicromolar range against E. coli and K. pneumoniae and low micromolar activity against A. baumannii, P. aeruginosa and S. aureus. Mechanistic studies indicated a membrane-related mechanism of action, and circular dichroism spectroscopy confirmed that mesco-2 is unstructured in water but forms stable helical structures on contact with anionic model membranes, indicating strong interactions and helix stacking. It is, however, unaffected by neutral membranes, suggesting selective antimicrobial activity. Structure prediction combined with molecular dynamics simulations suggested that mesco-2 adopts an unusual bent helix conformation with the N-terminal sequence, when bound to anionic membranes, driven by a central GRGIGRG motif. This study highlights mesco-2 as a promising antibacterial agent and emphasizes the importance of structural motifs in modulating AMP function.

Antimicrobial Peptide with a Bent Helix Motif Identified in Parasitic Flatworm Mesocestoides corti

M. Gerdol
Secondo
;
S. Pacor;M. Mardirossian;A. Tossi
Penultimo
;
2024-01-01

Abstract

The urgent need for antibiotic alternatives has driven the search for antimicrobial peptides (AMPs) from many different sources, yet parasite-derived AMPs remain underexplored. In this study, three novel potential AMP precursors (mesco-1, -2 and -3) were identified in the parasitic flatworm Mesocestoides corti, via a genome-wide mining approach, and the most promising one, mesco-2, was synthesized and comprehensively characterized. It showed potent broad-spectrum antibacterial activity at submicromolar range against E. coli and K. pneumoniae and low micromolar activity against A. baumannii, P. aeruginosa and S. aureus. Mechanistic studies indicated a membrane-related mechanism of action, and circular dichroism spectroscopy confirmed that mesco-2 is unstructured in water but forms stable helical structures on contact with anionic model membranes, indicating strong interactions and helix stacking. It is, however, unaffected by neutral membranes, suggesting selective antimicrobial activity. Structure prediction combined with molecular dynamics simulations suggested that mesco-2 adopts an unusual bent helix conformation with the N-terminal sequence, when bound to anionic membranes, driven by a central GRGIGRG motif. This study highlights mesco-2 as a promising antibacterial agent and emphasizes the importance of structural motifs in modulating AMP function.
2024
30-ott-2024
Pubblicato
File in questo prodotto:
File Dimensione Formato  
ijms-25-11690.pdf

accesso aperto

Descrizione: pdf
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3096960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact