Despite its high significance in nonlinear elasticity, the neo-Hookean energy is still not known to admit minimisers in some appropriate admissible class. Using ideas from relaxation theory, we propose a larger minimisation space and a modified functional that coincides with the neo-Hookean energy on the original space. This modified energy is the sum of the neo-Hookean energy and a term penalising the singularities of the inverse deformation. The new functional attains its minimum in the larger space, so the initial question of existence of minimisers of the neo-Hookean energy is thus transformed into a question of regularity of minimisers of this new energy.

A relaxation approach to the minimisation of the neo-Hookean energy in 3D

Marco Barchiesi
Primo
;
2024-01-01

Abstract

Despite its high significance in nonlinear elasticity, the neo-Hookean energy is still not known to admit minimisers in some appropriate admissible class. Using ideas from relaxation theory, we propose a larger minimisation space and a modified functional that coincides with the neo-Hookean energy on the original space. This modified energy is the sum of the neo-Hookean energy and a term penalising the singularities of the inverse deformation. The new functional attains its minimum in the larger space, so the initial question of existence of minimisers of the neo-Hookean energy is thus transformed into a question of regularity of minimisers of this new energy.
File in questo prodotto:
File Dimensione Formato  
relaxation neo-hook.pdf

accesso aperto

Descrizione: relaxation neo-hook
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 335.53 kB
Formato Adobe PDF
335.53 kB Adobe PDF Visualizza/Apri
published.pdf

Accesso chiuso

Descrizione: Articolo pubblicato
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 417.66 kB
Formato Adobe PDF
417.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3097118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact