This study investigated the electronic structure of single-atom Rhodium (Rh) and Iridium (Ir) adsorbed on defective and impurity-doped ZnO(0001) surfaces, and assessed their activity towards the CO oxidation reaction. Our findings reveal that surface impurities significantly influence the binding energies and electronic properties of the metal atoms, with Al and Cr serving as particularly effective promoters. While Rh and Ir acquire a positive charge upon incorporation on the unpromoted Zn(0001) surface, adsorption directly on the promoter results in a net negative charge, thus facilitating the activation of both CO and O2 species. These results highlight the potential of impurity-promoted ZnO surfaces in modulating and tailoring the electronic properties of SACs, which can be used for a rational design of active single-atom catalysts.

Electronic Structure of Rh and Ir Single Atom Catalysts Supported on Defective and Doped ZnO: Assessment of Their Activity Towards CO Oxidation

Daniele Toffoli
Ultimo
2024-01-01

Abstract

This study investigated the electronic structure of single-atom Rhodium (Rh) and Iridium (Ir) adsorbed on defective and impurity-doped ZnO(0001) surfaces, and assessed their activity towards the CO oxidation reaction. Our findings reveal that surface impurities significantly influence the binding energies and electronic properties of the metal atoms, with Al and Cr serving as particularly effective promoters. While Rh and Ir acquire a positive charge upon incorporation on the unpromoted Zn(0001) surface, adsorption directly on the promoter results in a net negative charge, thus facilitating the activation of both CO and O2 species. These results highlight the potential of impurity-promoted ZnO surfaces in modulating and tailoring the electronic properties of SACs, which can be used for a rational design of active single-atom catalysts.
File in questo prodotto:
File Dimensione Formato  
molecules-29-05082.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 7.67 MB
Formato Adobe PDF
7.67 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3097393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact