We investigate the geometry of classical Hamiltonian systems immersed in a magnetic field in three-dimensional (3D) Riemannian configuration spaces. We prove that these systems admit non-trivial symplectic-Haantjes manifolds, which are symplectic manifolds endowed with an algebra of Haantjes (1,1)-tensors. These geometric structures allow us to determine separation variables for known systems algorithmically. In addition, the underlying Stäckel geometry is used to construct new families of integrable Hamiltonian models immersed in a magnetic field.

Hamiltonian integrable systems in a magnetic field and symplectic-Haantjes geometry

Giorgio Tondo.
Ultimo
2024-01-01

Abstract

We investigate the geometry of classical Hamiltonian systems immersed in a magnetic field in three-dimensional (3D) Riemannian configuration spaces. We prove that these systems admit non-trivial symplectic-Haantjes manifolds, which are symplectic manifolds endowed with an algebra of Haantjes (1,1)-tensors. These geometric structures allow us to determine separation variables for known systems algorithmically. In addition, the underlying Stäckel geometry is used to construct new families of integrable Hamiltonian models immersed in a magnetic field.
File in questo prodotto:
File Dimensione Formato  
kubů-et-al-2024-hamiltonian-integrable-systems-in-a-magnetic-field-and-symplectic-haantjes-geometry.pdf

Accesso chiuso

Descrizione: Pubblicato online
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 611.67 kB
Formato Adobe PDF
611.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3097518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact