Field programmable gate arrays (FPGAs) have not only enhanced traditional sensing methods, such as pixel detection (CCD and CMOS), but also enabled the development of innovative approaches with significant potential for particle detection. This is particularly relevant in terahertz (THz) ray detection, where microbolometer-based focal plane arrays (FPAs) using microelectromechanical (MEMS) resonators are among the most promising solutions. Designing high-performance, high-pixel-density sensors is challenging without FPGAs, which are crucial for deterministic parallel processing, fast ADC/DAC control, and handling large data throughput. This paper presents a MEMS-resonator detector, fully managed via an FPGA, capable of controlling pixel excitation and tracking resonance-frequency shifts due to radiation using parallel digital lock-in amplifiers. The innovative FPGA architecture, based on a lock-in matrix, enhances the open-loop readout technique by a factor of 32. Measurements were performed on a frequency-multiplexed, 256-pixel sensor designed for imaging applications.

FPGA Readout for Frequency-Multiplexed Array of Micromechanical Resonators for Sub-Terahertz Imaging

Leonardo Gregorat
Primo
;
Marco Cautero;Sergio Carrato;Giuseppe Cautero
2024-01-01

Abstract

Field programmable gate arrays (FPGAs) have not only enhanced traditional sensing methods, such as pixel detection (CCD and CMOS), but also enabled the development of innovative approaches with significant potential for particle detection. This is particularly relevant in terahertz (THz) ray detection, where microbolometer-based focal plane arrays (FPAs) using microelectromechanical (MEMS) resonators are among the most promising solutions. Designing high-performance, high-pixel-density sensors is challenging without FPGAs, which are crucial for deterministic parallel processing, fast ADC/DAC control, and handling large data throughput. This paper presents a MEMS-resonator detector, fully managed via an FPGA, capable of controlling pixel excitation and tracking resonance-frequency shifts due to radiation using parallel digital lock-in amplifiers. The innovative FPGA architecture, based on a lock-in matrix, enhances the open-loop readout technique by a factor of 32. Measurements were performed on a frequency-multiplexed, 256-pixel sensor designed for imaging applications.
2024
Pubblicato
File in questo prodotto:
File Dimensione Formato  
sensors-24-07276-v2.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 23.35 MB
Formato Adobe PDF
23.35 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3098136
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact