Let $X$ be an arbitrary set. Then a topology $t$ on $X$ is said to be \textit{completely useful} if every upper semicontinuous linear (total) preorder $\precsim$ on $X$ can be represented by an upper semicontinuous real-valued order preserving function. In this paper, appealing, simple and new characterizations of completely useful topologies will be proved, therefore clarifying the structure of such topologies.

New characterizations of completely useful topologies in mathematical utility theory

Bosi G.;Daris R.;Sbaiz G.
2024-01-01

Abstract

Let $X$ be an arbitrary set. Then a topology $t$ on $X$ is said to be \textit{completely useful} if every upper semicontinuous linear (total) preorder $\precsim$ on $X$ can be represented by an upper semicontinuous real-valued order preserving function. In this paper, appealing, simple and new characterizations of completely useful topologies will be proved, therefore clarifying the structure of such topologies.
File in questo prodotto:
File Dimensione Formato  
New characterizations.pdf

accesso aperto

Descrizione: articolo
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 338.58 kB
Formato Adobe PDF
338.58 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3098158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact