In this article, a low-power, radiation-hard front-end circuit for monolithic pixel sensors, designed to meet the requirements of low noise and low pixel-to-pixel variability, the key features to achieve high detection efficiencies, is presented. The sensor features a small collection electrode to achieve a small capacitance (<5 fF) and allows full CMOS in-pixel circuitry. The circuit is implemented in the 180-nm CMOS imaging technology from the TowerJazz foundry and integrated into the MALTA2 chip, which is part of a development that targets the specifications of the outer pixel layer of the ATLAS Inner Tracker upgrade at the LHC. One of the main challenges for monolithic sensors is a radiation hardness up to 10(15) 1-MeV n(eq)/cm(2) non-ionizing energy loss (NIEL) and 80 Mrad total ionizing dose (TID) required for this application. Tests up to 3 . 10(15) 1-MeV n(eq)/cm(2) and 100 Mrad were performed on the MALTA2 sensor and front-end circuit, which still show good performance even after these levels of irradiation, promising for even more demanding applications such as the future experiments at the high-luminosity large hadron collider (HL-LHC).
A 1-mu W Radiation-Hard Front-End in a 0.18-mu m CMOS Process for the MALTA2 Monolithic Sensor
Gonella L;
2022-01-01
Abstract
In this article, a low-power, radiation-hard front-end circuit for monolithic pixel sensors, designed to meet the requirements of low noise and low pixel-to-pixel variability, the key features to achieve high detection efficiencies, is presented. The sensor features a small collection electrode to achieve a small capacitance (<5 fF) and allows full CMOS in-pixel circuitry. The circuit is implemented in the 180-nm CMOS imaging technology from the TowerJazz foundry and integrated into the MALTA2 chip, which is part of a development that targets the specifications of the outer pixel layer of the ATLAS Inner Tracker upgrade at the LHC. One of the main challenges for monolithic sensors is a radiation hardness up to 10(15) 1-MeV n(eq)/cm(2) non-ionizing energy loss (NIEL) and 80 Mrad total ionizing dose (TID) required for this application. Tests up to 3 . 10(15) 1-MeV n(eq)/cm(2) and 100 Mrad were performed on the MALTA2 sensor and front-end circuit, which still show good performance even after these levels of irradiation, promising for even more demanding applications such as the future experiments at the high-luminosity large hadron collider (HL-LHC).File | Dimensione | Formato | |
---|---|---|---|
A_1-W_Radiation-Hard_Front-End_in_a_0.18-m_CMOS_Process_for_the_MALTA2_Monolithic_Sensor.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.