In recent decades, the scientific community has increasingly focused on extreme events linked to climate change, which are leading to more intense and frequent natural disasters. The Mediterranean can be considered a hotspot where the effects of these changes are expected to be more intense compared to other regions of the planet. Italy is not exempt; in fact, with its extensive shoreline, it is particularly vulnerable, especially to high sea levels and coastal erosions. In this framework, from late October to early November 2023, six storm surges occurred in the Gulf of Trieste (NE Italy). These events, characterized by winds from 190°N to 220°N and the significant wave height, which reached up to 1.81 m nearshore—an uncommon meteorological condition in the northern Adriatic Sea—caused the occurrence of eight coastal sinkholes and substantial damages to man-made structures. Thanks to Unmanned Aerial Vehicles (UAVs) and their derived products (high-resolution orthomosaics, Digital Elevation Models—DEMs, and point clouds), it was possible to study these features over time, enabling long-term coastal dynamics monitoring, which can be crucial for timely and effective response and restoration efforts.

Coastal Storm-Induced Sinkholes: Insights from Unmanned Aerial Vehicle Monitoring

Busetti A.
Primo
;
Leone C.
Secondo
;
Corradetti A.;Fracaros S.;Spadotto S.;Rai P.;Zini L.
Penultimo
;
Calligaris C.
Ultimo
2024-01-01

Abstract

In recent decades, the scientific community has increasingly focused on extreme events linked to climate change, which are leading to more intense and frequent natural disasters. The Mediterranean can be considered a hotspot where the effects of these changes are expected to be more intense compared to other regions of the planet. Italy is not exempt; in fact, with its extensive shoreline, it is particularly vulnerable, especially to high sea levels and coastal erosions. In this framework, from late October to early November 2023, six storm surges occurred in the Gulf of Trieste (NE Italy). These events, characterized by winds from 190°N to 220°N and the significant wave height, which reached up to 1.81 m nearshore—an uncommon meteorological condition in the northern Adriatic Sea—caused the occurrence of eight coastal sinkholes and substantial damages to man-made structures. Thanks to Unmanned Aerial Vehicles (UAVs) and their derived products (high-resolution orthomosaics, Digital Elevation Models—DEMs, and point clouds), it was possible to study these features over time, enabling long-term coastal dynamics monitoring, which can be crucial for timely and effective response and restoration efforts.
File in questo prodotto:
File Dimensione Formato  
remotesensing-16-03681_low_res.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3103758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact