Context. The amount of turbulent pressure in galaxy clusters is still debated, especially in relation to the impact of the dynamical state and the hydro-method used for simulations. Aims. We study the turbulent pressure fraction in the intracluster medium of massive galaxy clusters. We aim to understand the im pact of the hydrodynamical scheme, analysis method, and dynamical state on the final properties of galaxy clusters from cosmological simulations. Methods. We performed non-radiative simulations of a set of zoom-in regions of seven galaxy clusters with meshless finite mass (MFM) and smoothed particle hydrodynamics (SPH). We used three different analysis methods based on: (i) the deviation from hy drostatic equilibrium, (ii) the solenoidal velocity component obtained by a Helmholtz-Hodge decomposition, and (iii) the small-scale velocity obtained through a multi-scale filtering approach. We split the sample of simulated clusters into active and relaxed clusters. Results. Our simulations predict an increased turbulent pressure fraction for active clusters compared to relaxed ones. This is espe cially visible for the velocity-based methods. For these, we also find increased turbulence for the MFM simulations compared to SPH, consistent with findings from more idealized simulations. The predicted nonthermal pressure fraction varies between a few percent for relaxed clusters and ≈13% for active ones within the cluster center and increases toward the outskirts. No clear trend with redshift is visible. Conclusions. Our analysis quantitatively assesses the importance played by the hydrodynamical scheme and the analysis method to determine the nonthermal or turbulent pressure fraction. While our setup is relatively simple (non-radiative runs), our simulations show agreement with previous, more idealized simulations, and represent a step closer to an understanding of turbulence.

Turbulent Pressure Support in Galaxy Clusters -- Impact of the Hydrodynamical Solver

Milena Valentini
Secondo
;
2025-01-01

Abstract

Context. The amount of turbulent pressure in galaxy clusters is still debated, especially in relation to the impact of the dynamical state and the hydro-method used for simulations. Aims. We study the turbulent pressure fraction in the intracluster medium of massive galaxy clusters. We aim to understand the im pact of the hydrodynamical scheme, analysis method, and dynamical state on the final properties of galaxy clusters from cosmological simulations. Methods. We performed non-radiative simulations of a set of zoom-in regions of seven galaxy clusters with meshless finite mass (MFM) and smoothed particle hydrodynamics (SPH). We used three different analysis methods based on: (i) the deviation from hy drostatic equilibrium, (ii) the solenoidal velocity component obtained by a Helmholtz-Hodge decomposition, and (iii) the small-scale velocity obtained through a multi-scale filtering approach. We split the sample of simulated clusters into active and relaxed clusters. Results. Our simulations predict an increased turbulent pressure fraction for active clusters compared to relaxed ones. This is espe cially visible for the velocity-based methods. For these, we also find increased turbulence for the MFM simulations compared to SPH, consistent with findings from more idealized simulations. The predicted nonthermal pressure fraction varies between a few percent for relaxed clusters and ≈13% for active ones within the cluster center and increases toward the outskirts. No clear trend with redshift is visible. Conclusions. Our analysis quantitatively assesses the importance played by the hydrodynamical scheme and the analysis method to determine the nonthermal or turbulent pressure fraction. While our setup is relatively simple (non-radiative runs), our simulations show agreement with previous, more idealized simulations, and represent a step closer to an understanding of turbulence.
File in questo prodotto:
File Dimensione Formato  
aa51803-24 (1).pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3104641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact