Let X be an arbitrary nonempty set. Then a topology t on X is said to be completely useful (or upper useful) if every upper semicontinuous total preorder ≾ on the topological space (X,t) can be represented by an upper semicontinuous real-valued order-preserving function (i.e., utility function). In this paper the structures of completely useful topologies on X will be deeply studied and clarified. In particular, completely useful topologies will be characterized through the new notions of super-short and strongly separable topologies. Further, the incorporation of the Souslin Hypothesis and the relevance of these characterizations in mathematical utility theory will be discussed. Finally, various interrelations between the concepts of complete usefulness and other topological concepts that are of interest not only in mathematical utility theory are analyzed.

Upper semicontinuous utilities for all upper semicontinuous total preorders

Bosi G.;Sbaiz G.
2025-01-01

Abstract

Let X be an arbitrary nonempty set. Then a topology t on X is said to be completely useful (or upper useful) if every upper semicontinuous total preorder ≾ on the topological space (X,t) can be represented by an upper semicontinuous real-valued order-preserving function (i.e., utility function). In this paper the structures of completely useful topologies on X will be deeply studied and clarified. In particular, completely useful topologies will be characterized through the new notions of super-short and strongly separable topologies. Further, the incorporation of the Souslin Hypothesis and the relevance of these characterizations in mathematical utility theory will be discussed. Finally, various interrelations between the concepts of complete usefulness and other topological concepts that are of interest not only in mathematical utility theory are analyzed.
2025
15-gen-2025
Pubblicato
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0165489625000101-main.pdf

Accesso chiuso

Descrizione: Articolo finale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3104760
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact