With a motivation to unravel the effect of cation (Mn) doping-induced modifications in structure, charge transfer resistance, and Li-ion diffusion in V2O5 a systematic study using X-ray diffraction (XRD), Raman Spectroscopy and electrochemical impedance spectroscopy (EIS) has been employed using three electrodes configuration. Structural investigations using XRD suggest the selective diffusion of Mn ion towards the c-axis at a low doping percentage. Raman spectroscopy suggests the shift in 994 cm-1 modes which substantiates the uniaxial diffusion of Mn ions. Nyquist plots show that interfacial charge transfer resistance is highest for the lowest doping i.e., 1% Mn-doped V2O5 and exhibits the lowest diffusion coefficient as compared to other doped V2O5 samples. Specific capacitance calculated from cyclic voltammetry is found to be highest for the 4% Mn-doped V2O5 sample. Moreover, diffusion of Lithium ions improves with an increase in doping concentration due to higher concentration of defects as evident from Δd/d and Nelson–Riley factor (NRF) for pure V2O5 and Mn-doped V2O5.

Defect controlled diffusion of lithium ions in Mn doped V2O5 for potential applications as cathode material

Kumar A.;
2023-01-01

Abstract

With a motivation to unravel the effect of cation (Mn) doping-induced modifications in structure, charge transfer resistance, and Li-ion diffusion in V2O5 a systematic study using X-ray diffraction (XRD), Raman Spectroscopy and electrochemical impedance spectroscopy (EIS) has been employed using three electrodes configuration. Structural investigations using XRD suggest the selective diffusion of Mn ion towards the c-axis at a low doping percentage. Raman spectroscopy suggests the shift in 994 cm-1 modes which substantiates the uniaxial diffusion of Mn ions. Nyquist plots show that interfacial charge transfer resistance is highest for the lowest doping i.e., 1% Mn-doped V2O5 and exhibits the lowest diffusion coefficient as compared to other doped V2O5 samples. Specific capacitance calculated from cyclic voltammetry is found to be highest for the 4% Mn-doped V2O5 sample. Moreover, diffusion of Lithium ions improves with an increase in doping concentration due to higher concentration of defects as evident from Δd/d and Nelson–Riley factor (NRF) for pure V2O5 and Mn-doped V2O5.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3105100
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 14
social impact