The evaluation of air pollution is a critical concern due to its potential severe impacts on human health. Currently, vast quantities of data are collected at high frequencies, and researchers must navigate multiannual, multisite datasets trying to identify possible pollutant sources while addressing the presence of noise and sparse missing data. To address this challenge, multivariate data analysis is widely used with an increasing interest in neural networks and deep learning networks along with well-established chemometrics methods and receptor models. Here, we report a combined approach involving the Self-Organizing Map (SOM) algorithm, Hierarchical Clustering Analysis (HCA), and Positive Matrix Factorization (PMF) to disentangle multiannual, multisite data in a single elaboration without previously separating the sites and years. The approach proved to be valid, allowing us to detect the site peculiarities in terms of pollutant sources, the variation in pollutant profiles during years and the outliers, affording a reliable interpretation.

Disentangling Multiannual Air Quality Profiles Aided by Self-Organizing Map and Positive Matrix Factorization

Fornasaro S.;Barbieri P.;Licen S.
2025-01-01

Abstract

The evaluation of air pollution is a critical concern due to its potential severe impacts on human health. Currently, vast quantities of data are collected at high frequencies, and researchers must navigate multiannual, multisite datasets trying to identify possible pollutant sources while addressing the presence of noise and sparse missing data. To address this challenge, multivariate data analysis is widely used with an increasing interest in neural networks and deep learning networks along with well-established chemometrics methods and receptor models. Here, we report a combined approach involving the Self-Organizing Map (SOM) algorithm, Hierarchical Clustering Analysis (HCA), and Positive Matrix Factorization (PMF) to disentangle multiannual, multisite data in a single elaboration without previously separating the sites and years. The approach proved to be valid, allowing us to detect the site peculiarities in terms of pollutant sources, the variation in pollutant profiles during years and the outliers, affording a reliable interpretation.
2025
Pubblicato
File in questo prodotto:
File Dimensione Formato  
toxics-13-00137-v2.pdf

accesso aperto

Descrizione: articolo
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 4.77 MB
Formato Adobe PDF
4.77 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3106298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact