Harmful algal blooms are an expanding phenomenon negatively impacting human health, socio-economic welfare, and ecosystems. Such events increase the risk of marine organisms’ exposure to algal toxins with consequent ecological effects. In this frame, the objective of this study was to investigate the ecotoxicological potential of three globally distributed dinoflagellate toxins (okadaic acid, OA; dinophysistoxin-1, DTX-1; dinophysistoxin-2, DTX-2) using Artemia franciscana as a model organism of marine zooplankton. Each toxin (0.1–100 nM) was evaluated for its toxic effects in terms of cyst hatching, mortality of nauplii Instar I and adults, and biochemical responses related to oxidative stress. At the highest concentration (100 nM), these toxins significantly increased adults’ mortality starting from 24 h (DTX-1), 48 h (OA), or 72 h (DTX-2) exposures, DTX-1 being the most potent one, followed by OA and DTX-2. The quantitation of oxidative stress biomarkers in adults, i.e., reactive oxygen species (ROS) production and activity of three endogenous antioxidant defense enzymes (glutathione S-transferase, superoxide dismutase, and catalase) showed that only DTX-2 significantly increased ROS production, whereas each toxin affected the antioxidant enzymes with a different activity profile. In general, the results indicate a negative impact of these toxins towards A. franciscana with potential consequences on the marine ecosystem.
Effects of Dinoflagellate Toxins Okadaic Acid and Dinophysistoxin-1 and -2 on the Microcrustacean Artemia franciscana
Cavion F.Primo
;Sosa S.
Secondo
;D'Arelli A.;Ponti C.;Carlin M.;Tubaro A.Penultimo
;Pelin M.Ultimo
2025-01-01
Abstract
Harmful algal blooms are an expanding phenomenon negatively impacting human health, socio-economic welfare, and ecosystems. Such events increase the risk of marine organisms’ exposure to algal toxins with consequent ecological effects. In this frame, the objective of this study was to investigate the ecotoxicological potential of three globally distributed dinoflagellate toxins (okadaic acid, OA; dinophysistoxin-1, DTX-1; dinophysistoxin-2, DTX-2) using Artemia franciscana as a model organism of marine zooplankton. Each toxin (0.1–100 nM) was evaluated for its toxic effects in terms of cyst hatching, mortality of nauplii Instar I and adults, and biochemical responses related to oxidative stress. At the highest concentration (100 nM), these toxins significantly increased adults’ mortality starting from 24 h (DTX-1), 48 h (OA), or 72 h (DTX-2) exposures, DTX-1 being the most potent one, followed by OA and DTX-2. The quantitation of oxidative stress biomarkers in adults, i.e., reactive oxygen species (ROS) production and activity of three endogenous antioxidant defense enzymes (glutathione S-transferase, superoxide dismutase, and catalase) showed that only DTX-2 significantly increased ROS production, whereas each toxin affected the antioxidant enzymes with a different activity profile. In general, the results indicate a negative impact of these toxins towards A. franciscana with potential consequences on the marine ecosystem.File | Dimensione | Formato | |
---|---|---|---|
toxins-17-00080 pubblicato.pdf
accesso aperto
Descrizione: Documento principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.52 MB
Formato
Adobe PDF
|
2.52 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.