Glycoconjugation is a well-established technology for vaccines development: linkage of the polysaccharide (PS) antigen to a carrier protein (as CRM197) makes PS effective in infants and provides immunological memory. Over the last decades, glycoconjugates have been successful in reducing the burden of different pathogens, but many diseases still remain to be controlled and more urgency is due to emergence of antimicrobial resistant bacteria. Considering the variety of PS antigens displayed on the surface of pathogens for which no vaccines are available, high-valency glycoconjugates will be required. The aim of my PhD project was to identify generic PS purification and conjugation methodologies, simplifying and accelerating the development of multi-valent vaccines. A high-throughput method for the purification of capsular polysaccharides from Klebsiella pneumoniae (Kp), independently from their structural variability, was developed. Kp is a Gram-negative bacterium and a leading cause of neonatal sepsis in low- and middle-income countries, often associated with antimicrobial resistance. Current approaches for the development of a Kp vaccine make use of the glycoconjugation technology and target multiple capsular polysaccharide, well-characterized virulence factors exposed on the bacterial surface. The method developed, based on CTAB fractional precipitation, was successfully applied to purify K-antigens from different Kp strains, thereby demonstrating its robustness and general applicability. Further, antigens characterization showed that the purification method had no impact on PS structural integrity and preserved labile substituents such as O-acetyl and pyruvyl groups, that could be critical for immunogenicity. Subsequently, CDAP chemistry was selected as a generic conjugation strategy that can be easily applied to PS with different structures. This chemistry utilizes functional groups common to a broad range of PS and proteins, e.g., hydroxyl groups on the PS and amino groups on the protein. New fast analytical tools to study the CDAP reaction were developed, and reaction conditions for PS activation and conjugation were extensively investigated. Mathematical models were built to identify the reaction conditions to generate conjugates with wanted characteristics and successfully applied to a large number of bacterial PS from different pathogens, e.g., Kp, Salmonella, Shighella. Furthermore, using Salmonella Paratyphi A O-antigen and CRM197 as models, a design of experiment approach was used to study the impact of conjugation conditions and conjugate features on immunogenicity in rabbits. The work contributed to the design of an optimal glycoconjugate against S. Paratyphi A, currently in Ph1 clinical trial, which can be rapidly extended to other PS. CDAP chemistry was also applied to the conjugation of PS to new carrier systems, like Generalized Modules of Membrane Antigens (GMMA). GMMA are outer membrane vesicles released from genetically modified Gram-negative bacteria. In particular, S. Paratyphi A O:2 was linked to Shigella sonnei GMMA. The resulting conjugate was able to elicit strong immune responses against both Shigella and Salmonella antigens with no negative immuno interference. Also, genetic manipulation was used to generate Kp GMMA displaying two different PS, K- and O-antigens, on their surface. A multicomponent GMMA formulation was tested in mice, demonstrating that Kp GMMA from different strains can be combined without negative immuno interference and providing broad coverage against more relevant Kp serotypes. Overall, the results obtained during my PhD studies will facilitate and accelerate development of glycoconjugate vaccines.

La glicoconiugazione è una tecnologia consolidata per lo sviluppo di vaccini: il legame tra antigene polisaccaridico (PS) e proteina carrier (CRM197) rende il PS efficace nei neonati fornendo memoria immunologica. Sebbene negli ultimi decenni i glicoconiugati abbiano avuto un grosso impatto nella riduzione delle malattie da diversi patogeni, per molte infezioni batteriche vaccini efficaci devono ancora essere sviluppati. La resistenza agli antibiotici (AMR) rappresenta una grossa problematica a livello globale. Considerando la varietà di PS esposti sulla superficie dei patogeni per i quali non sono disponibili vaccini, sarà necessario disporre di vaccini glicoconiugati ad alta valenza, ovvero in grado di proteggere da diversi strains dello stesso patogeno. Obiettivo principale del progetto di dottorato è stata l’identificazione di metodologie generiche di purificazione e coniugazione di PS, al fine di semplificare lo sviluppo di vaccini multivalenti. È stato sviluppato un metodo per la purificazione di PS da crescite di Klebsiella pneumoniae (Kp), applicabile indipendentemente dalla variabilità strutturale. Kp è un batterio Gram-negativo, una delle principali cause di sepsi neonatale nei paesi a basso e medio reddito, la cui infezione è spesso associata al fenomeno AMR. Attualmente lo sviluppo di un vaccino contro Kp prevede l’impiego di glicoconiugati a partire da capsulari, noti fattori di virulenza sulla superficie batterica. Il metodo di purificazione, di cui è stata dimostrata la robustezza e la generale applicabilità, si basa sulla precipitazione frazionata con CTAB ed è stato applicato con successo per purificare antigeni diversi di Kp. Inoltre, è stato dimostrato che il metodo non ha un’ impatto sull'integrità strutturale del PS, permettendo di preservare sostituenti labili come O-acetile e piruvato, potenzialmente critici per l'immunogenicità. La chimica CDAP è stata selezionata come strategia di coniugazione generica per essere facilmente applicata a PS con strutture diverse, utilizzando gruppi funzionali comuni a una vasta gamma di PS e proteine, quali gruppi -OH su PS e -NH2 su proteina. Sono stati sviluppati nuovi strumenti analitici per studiare la reazione con CDAP; le condizioni di reazione per attivazione e coniugazione del PS sono state indagate. Sono stati costruiti modelli matematici, per identificare condizioni di reazione per generare coniugati con caratteristiche desiderate, e applicati a un gran numero di PS da diversi patogeni (Kp, Salmonella, Shigella). Utilizzando modelli quali l’antigene di S. Paratifo A (O:2) e CRM197, è stato impiegato l’approccio di Design of Experiment per studiare l'impatto delle condizioni di coniugazione e delle caratteristiche del coniugato finale sull'immunogenicità in animale. Il lavoro ha contribuito alla produzione di un glicoconiugato ottimale contro S. Paratifo A, attualmente in sperimentazione clinica di fase 1, e può essere rapidamente esteso ad altri PS. La chimica CDAP è stata applicata con successo alla coniugazione di PS a nuovi sistemi carrier come GMMA (Generalized Modules of Membrane Antigens). Si tratta di vescicole rilasciate dalla membrana esterna di batteri Gram-negativi geneticamente modificati. S. Paratifo A O:2 è stato coniugato a Shigella GMMA. Il risultante coniugato, testato in topo, genera una buona risposta immunitaria sia contro S. Paratifo che Shigella, senza nessuna immunointerferenza negativa. Diverse GMMA di Kp sono state ottenute a partire dai corrispettivi batteri geneticamente modificati in modo da presentare sulla superficie della vescicola due diversi PS, antigeni K e O. Le Kp GMMA sono state combinate in una formulazione multicomponente e testate, dimostrando assenza di immunointereferenza negativa con ampia copertura contro vari serotipi di Kp. I risultati ottenuti durante il dottorato trovano applicazione nello sviluppo di vaccini glicoconiugati, facilitando lo sviluppo di formulazioni ad alta valenza.

Stategie per facilitare lo sviluppo di vaccini multivalenti / Nappini, Rebecca. - (2025 Mar 21).

Stategie per facilitare lo sviluppo di vaccini multivalenti

NAPPINI, REBECCA
2025-03-21

Abstract

Glycoconjugation is a well-established technology for vaccines development: linkage of the polysaccharide (PS) antigen to a carrier protein (as CRM197) makes PS effective in infants and provides immunological memory. Over the last decades, glycoconjugates have been successful in reducing the burden of different pathogens, but many diseases still remain to be controlled and more urgency is due to emergence of antimicrobial resistant bacteria. Considering the variety of PS antigens displayed on the surface of pathogens for which no vaccines are available, high-valency glycoconjugates will be required. The aim of my PhD project was to identify generic PS purification and conjugation methodologies, simplifying and accelerating the development of multi-valent vaccines. A high-throughput method for the purification of capsular polysaccharides from Klebsiella pneumoniae (Kp), independently from their structural variability, was developed. Kp is a Gram-negative bacterium and a leading cause of neonatal sepsis in low- and middle-income countries, often associated with antimicrobial resistance. Current approaches for the development of a Kp vaccine make use of the glycoconjugation technology and target multiple capsular polysaccharide, well-characterized virulence factors exposed on the bacterial surface. The method developed, based on CTAB fractional precipitation, was successfully applied to purify K-antigens from different Kp strains, thereby demonstrating its robustness and general applicability. Further, antigens characterization showed that the purification method had no impact on PS structural integrity and preserved labile substituents such as O-acetyl and pyruvyl groups, that could be critical for immunogenicity. Subsequently, CDAP chemistry was selected as a generic conjugation strategy that can be easily applied to PS with different structures. This chemistry utilizes functional groups common to a broad range of PS and proteins, e.g., hydroxyl groups on the PS and amino groups on the protein. New fast analytical tools to study the CDAP reaction were developed, and reaction conditions for PS activation and conjugation were extensively investigated. Mathematical models were built to identify the reaction conditions to generate conjugates with wanted characteristics and successfully applied to a large number of bacterial PS from different pathogens, e.g., Kp, Salmonella, Shighella. Furthermore, using Salmonella Paratyphi A O-antigen and CRM197 as models, a design of experiment approach was used to study the impact of conjugation conditions and conjugate features on immunogenicity in rabbits. The work contributed to the design of an optimal glycoconjugate against S. Paratyphi A, currently in Ph1 clinical trial, which can be rapidly extended to other PS. CDAP chemistry was also applied to the conjugation of PS to new carrier systems, like Generalized Modules of Membrane Antigens (GMMA). GMMA are outer membrane vesicles released from genetically modified Gram-negative bacteria. In particular, S. Paratyphi A O:2 was linked to Shigella sonnei GMMA. The resulting conjugate was able to elicit strong immune responses against both Shigella and Salmonella antigens with no negative immuno interference. Also, genetic manipulation was used to generate Kp GMMA displaying two different PS, K- and O-antigens, on their surface. A multicomponent GMMA formulation was tested in mice, demonstrating that Kp GMMA from different strains can be combined without negative immuno interference and providing broad coverage against more relevant Kp serotypes. Overall, the results obtained during my PhD studies will facilitate and accelerate development of glycoconjugate vaccines.
21-mar-2025
CESCUTTI, PAOLA
37
2023/2024
Settore BIOS-07/A - Biochimica
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
Tesi versione finale_RebeccaNappini.pdf

accesso aperto

Descrizione: Tesi
Tipologia: Tesi di dottorato
Dimensione 7.36 MB
Formato Adobe PDF
7.36 MB Adobe PDF Visualizza/Apri
Tesi versione finale_RebeccaNappini_1.pdf

accesso aperto

Descrizione: Tesi
Tipologia: Tesi di dottorato
Dimensione 7.36 MB
Formato Adobe PDF
7.36 MB Adobe PDF Visualizza/Apri
Tesi versione finale_RebeccaNappini_2.pdf

accesso aperto

Descrizione: Tesi
Tipologia: Tesi di dottorato
Dimensione 7.36 MB
Formato Adobe PDF
7.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3107005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact