Klebsiella pneumoniae is a gram-negative bacterium that can cause various diseases, often nosocomial. The most important and widespread strains are multidrug-resistant. The bacterial capsule and biofilm are important virulence factors for this species. The structure of the capsular polysaccharide (CPS) differs among strains in terms of composition and linkages. The CPS is also a major component of biofilms and is considered a possible target for the development of novel and specific antimicrobial strategies. This study was funded by the Italian Minister of University and Research and aims to exploit the specificity of bacteriophage endoglycosidases (EG), to selectively deliver liposomes, or other carriers, to the target microorganism without affecting the host microbiome. The idea is to anchor the EG to the outer surface of the carrier to direct it to the target cells. By degrading the CPS, the EG allows the carrier to reach and fuse with the outer membrane of the bacterium, thereby delivering its antibacterial content into the periplasm. My PhD project consisted of two parts, in which different K. pneumoniae strains were investigated. The first part focused on strains KpB-1 and KMn-7, both clinical isolates belonging to ST512. They produce the same CPS and form biofilms. My contribution to the project was to characterize the effect of a phage EG on the CPS, planktonic cells, and biofilm of these clinical isolates, a preliminar step to proceed with the modification of the carrier. The phage named ФBO1E (gift of Prof. M. M. D’Andrea, Univ. Rome Tor Vergata), was used in this study. It was demonstrated that this phage cleaves the CPS of these strains, thanks to its EG that specifically recognizes the α-L-Rhap-(1→3)-β-D-Galp linkage of the CPS. Moreover, at a concentration of 109 plaque-forming units, the phage is able to disrupt the KMn-7 preformed biofilm. In addition, the phage EG was cloned, purified and characterized in terms of thermal stability and activity against the same targets. A 3D structure prediction together with size exclusion chromatography, showed that the enzyme forms trimers that are active against the CPS. Even though the EG has no intrinsic antibacterial activity, it proved to have a synergistic effect with colistin, increasing the bactericidal activity of the antibiotic towards KpB-1 and KMn-7. Since binding of the EG to the carrier involves lysine residues in the enzyme, in order to protect the active site, the primary structure of the EG was altered by adding two lysines to the N-terminal of the protein. The mutated version of the EG was cloned, purified and it resulted to be active. In the second part of the project, the structure of the CPS of K. pneumoniae strain IT395 ST307 was determined. The activity of the specific phage GP1 (gift of Prof. M. M. D’Andrea) against the CPS of the strain was characterized and it was demonstrated that the EG associated to the phage cleaves the linkage β-D-Galp-(1→4)-α-D-Galp in the CPS. My research data provided the knowledge necessary to proceed with the combination of the EG with a carrier loaded with an antimicrobial agent.
Klebsiella pneumoniae è un batterio che può causare diverse malattie, spesso di origine nosocomiale. I ceppi più importanti sono multi-resistenti agli antibiotici per questo motivo, è considerato uno dei patogeni opportunisti più critici. La capsula batterica e il biofilm sono importanti fattori di virulenza. La struttura del polisaccaride capsulare (CPS) viene determinata mediante GLC-MS e NMR e differisce tra i vari ceppi di K. pneumoniae in termini di composizione degli zuccheri e legami glicosidici. Il CPS è anche un componente principale dei biofilm batterici ed è considerato un possibile bersaglio per lo sviluppo di nuove strategie antimicrobiche molto specifiche. Questo studio fa parte di un progetto finanziato dal MUR, il cui obiettivo generale è sfruttare la specificità delle endoglicosidasi (EG) dei batteriofagi, idrolasi che hanno il CPS come substrato. L'idea è di ancorare l'EG alla superficie esterna di un carrier per indirizzarlo verso le cellule bersaglio. Degradando la capsula, l'EG consente al vettore di raggiungere e fondersi con la membrana esterna del batterio, rilasciando il suo contenuto nel periplasma. Il mio progetto di dottorato si è articolato in due parti, in cui sono stati studiati diversi ceppi di K. pneumoniae. La prima parte si è concentrata sui ceppi KpB-1 e KMn-7, entrambi isolati clinici appartenenti al ST512, uno dei principali responsabili della pandemia globale. KpB-1 e KMn-7 producono lo stesso CPS ed entrambi sono capaci di formare biofilm. Il mio contributo al progetto è stato caratterizzare l'effetto di un'EG sul CPS, sulle cellule planktoniche e sul biofilm di questi isolati clinici. In questo studio è stato utilizzato il batteriofago ФBO1E (ricevuto dal Prof. M. M. D’Andrea, Univ. Roma Tor Vergata). È stato dimostrato che questo fago taglia il CPS di questi ceppi, grazie alla sua EG che riconosce specificamente il legame α-L-Rhap-(1→3)-β-D-Galp nella RU del CPS. Inoltre, ad alte concentrazioni il fago è in grado di disgregare il biofilm preformato di KMn-7. L’EG del fago è stata clonata, purificata e caratterizzata in termini di stabilità termica e attività contro gli stessi bersagli. Una previsione della struttura 3D, insieme alla cromatografia a esclusione dimensionale, ha mostrato che l'enzima attivo contro il CPS ha una conformazione trimerica. Anche se l'enzima non ha attività antibatterica intrinseca, ha dimostrato di avere un effetto sinergico con la colistina, aumentando l'attività battericida dell'antibiotico contro K. pneumoniae KpB-1 e KMn-7. La proteina è stata ingegnerizzata per aggiungere due lisine all’ N-terminale. La versione mutata dell'EG è stata clonata, purificata e la sua attività è stata verificata. Nella seconda parte del progetto, è stato considerato il ceppo IT395 ST307. Innanzitutto, è stata determinata la struttura del suo CPS, poiché in letteratura non erano disponibili dati su questo polimero. Poi, è stata caratterizzata l'attività del batteriofago specifico GP1 (ricevuto dal Prof. M. M. D’Andrea) contro il CPS del ceppo, dimostrando che l'EG associata al fago scinde il legame β-D-Galp-(1→4)-α-D-Galp nella RU del CPS, ottenendo così le informazioni di base per procedere ulteriormente nella ricerca come fatto con gli altri due ceppi.
Utilizzo di endoglicosidasi da batteriofagi per combattere infezioni causate da Klebsiella pneumoniae / Zaro, Michela. - (2025 Mar 21).
Utilizzo di endoglicosidasi da batteriofagi per combattere infezioni causate da Klebsiella pneumoniae
ZARO, MICHELA
2025-03-21
Abstract
Klebsiella pneumoniae is a gram-negative bacterium that can cause various diseases, often nosocomial. The most important and widespread strains are multidrug-resistant. The bacterial capsule and biofilm are important virulence factors for this species. The structure of the capsular polysaccharide (CPS) differs among strains in terms of composition and linkages. The CPS is also a major component of biofilms and is considered a possible target for the development of novel and specific antimicrobial strategies. This study was funded by the Italian Minister of University and Research and aims to exploit the specificity of bacteriophage endoglycosidases (EG), to selectively deliver liposomes, or other carriers, to the target microorganism without affecting the host microbiome. The idea is to anchor the EG to the outer surface of the carrier to direct it to the target cells. By degrading the CPS, the EG allows the carrier to reach and fuse with the outer membrane of the bacterium, thereby delivering its antibacterial content into the periplasm. My PhD project consisted of two parts, in which different K. pneumoniae strains were investigated. The first part focused on strains KpB-1 and KMn-7, both clinical isolates belonging to ST512. They produce the same CPS and form biofilms. My contribution to the project was to characterize the effect of a phage EG on the CPS, planktonic cells, and biofilm of these clinical isolates, a preliminar step to proceed with the modification of the carrier. The phage named ФBO1E (gift of Prof. M. M. D’Andrea, Univ. Rome Tor Vergata), was used in this study. It was demonstrated that this phage cleaves the CPS of these strains, thanks to its EG that specifically recognizes the α-L-Rhap-(1→3)-β-D-Galp linkage of the CPS. Moreover, at a concentration of 109 plaque-forming units, the phage is able to disrupt the KMn-7 preformed biofilm. In addition, the phage EG was cloned, purified and characterized in terms of thermal stability and activity against the same targets. A 3D structure prediction together with size exclusion chromatography, showed that the enzyme forms trimers that are active against the CPS. Even though the EG has no intrinsic antibacterial activity, it proved to have a synergistic effect with colistin, increasing the bactericidal activity of the antibiotic towards KpB-1 and KMn-7. Since binding of the EG to the carrier involves lysine residues in the enzyme, in order to protect the active site, the primary structure of the EG was altered by adding two lysines to the N-terminal of the protein. The mutated version of the EG was cloned, purified and it resulted to be active. In the second part of the project, the structure of the CPS of K. pneumoniae strain IT395 ST307 was determined. The activity of the specific phage GP1 (gift of Prof. M. M. D’Andrea) against the CPS of the strain was characterized and it was demonstrated that the EG associated to the phage cleaves the linkage β-D-Galp-(1→4)-α-D-Galp in the CPS. My research data provided the knowledge necessary to proceed with the combination of the EG with a carrier loaded with an antimicrobial agent.File | Dimensione | Formato | |
---|---|---|---|
Thesis Michela Zaro final.pdf
accesso aperto
Descrizione: tesi
Tipologia:
Tesi di dottorato
Dimensione
5.02 MB
Formato
Adobe PDF
|
5.02 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.