Monoclonal antibodies (mAbs) are indispensable in diagnostics and therapeutics due to their specificity and versatility. However, the development of next-generation mAbs requires platforms that improve selection efficiency, enhance binding affinity, and ensure robust performance in real-world diagnostic applications. This thesis presents an innovative platform that combines phage display and yeast display technologies to enable the high-throughput selection and characterization of monoclonal antibodies tailored for complex diagnostic scenarios. The platform was validated using pancreatic elastase (CELA3B) as a model antigen to develop diagnostic tools for pancreatic exocrine insufficiency. The workflow began with the production and biotinylation of recombinant CELA3B protein. Initial antibody selection was performed using phage display on the recombinant antigen to isolate clones with binding specificity. This selection output was subsequently transformed into yeast cells and screened directly against both the recombinant protein and biological samples containing the “natural” antigen, replicating diagnostic conditions. Yeast display allowed high-throughput screening of antibody clones through fluorescence-activated cell sorting (FACS), which facilitated the isolation and characterization of candidates with optimal binding properties in real time. Subsequently, biolayer interferometry (BLI) was employed to measure kinetic parameters and binding affinities with precision. The selected antibody candidates were reformatted into scFv-mouse IgG Fc antibody and preliminarily tested in diagnostic assays such as enzyme-linked immunosorbent assays (ELISA). These initial results suggest adequate sensitivity and specificity in complex biological matrices, with further evaluations underway. This study enabled the development of a robust, scalable, and versatile platform for generating monoclonal antibodies capable of meeting the stringent requirements of modern diagnostic applications.
Gli anticorpi monoclonali (mAbs) sono fondamentali sia in ambito diagnostico che terapeutico grazie alla loro specificità e versatilità. Tuttavia, lo sviluppo di anticorpi monoclonali di nuova generazione richiede piattaforme che migliorino l’efficienza di selezione, potenzino l'affinità di legame e garantiscano prestazioni robuste nelle applicazioni diagnostiche reali. Questa tesi presenta una piattaforma innovativa che combina le tecnologie di phage display e yeast display, consentendo la selezione e la caratterizzazione di anticorpi monoclonali progettati per scenari diagnostici complessi. La piattaforma è stata validata utilizzando l'elastasi pancreatica (CELA3B) come antigene modello per lo sviluppo di strumenti diagnostici per l'insufficienza esocrina pancreatica. Il progetto ha previsto inizialmente la produzione e biotinilazione della proteina ricombinante CELA3B. La selezione iniziale degli anticorpi è stata eseguita tramite phage display sull'antigene ricombinante per isolare cloni con alta specificità di legame. Il risultato della selezione è stato successivamente trasformato in cellule di lievito e sottoposto a screening diretto sia contro la proteina ricombinante che contro campioni biologici contenenti l'antigene "naturale", replicando così le condizioni diagnostiche. L’yeast display ha permesso uno screening di cloni anticorpali attraverso il fluorescence-activated cell sorting (FACS), facilitando l’isolamento e la caratterizzazione in tempo reale dei candidati con le migliori proprietà di legame. Successivamente, il biolayer interferometry (BLI) è stata utilizzato per misurare i parametri cinetici e le affinità di legame con precisione. I candidati anticorpali selezionati sono stati riformattati in scFv-mouse IgG Fc e preliminarmente testati in saggi diagnostici come ELISA (Enzyme-Linked Immunosorbent Assay). I risultati preliminari suggeriscono una sensibilità e specificità adeguate in matrici biologiche complesse, con ulteriori valutazioni in corso. Questo studio ha permesso di sviluppare una piattaforma robusta, scalabile e versatile per la generazione di anticorpi monoclonali in grado di soddisfare i requisiti stringenti delle applicazioni diagnostiche moderne.
Development of an innovative platform for the selection and characterization of new generation monoclonal antibodies / Fattorini, Mariagiulia. - (2025 Mar 21).
Development of an innovative platform for the selection and characterization of new generation monoclonal antibodies
FATTORINI, MARIAGIULIA
2025-03-21
Abstract
Monoclonal antibodies (mAbs) are indispensable in diagnostics and therapeutics due to their specificity and versatility. However, the development of next-generation mAbs requires platforms that improve selection efficiency, enhance binding affinity, and ensure robust performance in real-world diagnostic applications. This thesis presents an innovative platform that combines phage display and yeast display technologies to enable the high-throughput selection and characterization of monoclonal antibodies tailored for complex diagnostic scenarios. The platform was validated using pancreatic elastase (CELA3B) as a model antigen to develop diagnostic tools for pancreatic exocrine insufficiency. The workflow began with the production and biotinylation of recombinant CELA3B protein. Initial antibody selection was performed using phage display on the recombinant antigen to isolate clones with binding specificity. This selection output was subsequently transformed into yeast cells and screened directly against both the recombinant protein and biological samples containing the “natural” antigen, replicating diagnostic conditions. Yeast display allowed high-throughput screening of antibody clones through fluorescence-activated cell sorting (FACS), which facilitated the isolation and characterization of candidates with optimal binding properties in real time. Subsequently, biolayer interferometry (BLI) was employed to measure kinetic parameters and binding affinities with precision. The selected antibody candidates were reformatted into scFv-mouse IgG Fc antibody and preliminarily tested in diagnostic assays such as enzyme-linked immunosorbent assays (ELISA). These initial results suggest adequate sensitivity and specificity in complex biological matrices, with further evaluations underway. This study enabled the development of a robust, scalable, and versatile platform for generating monoclonal antibodies capable of meeting the stringent requirements of modern diagnostic applications.File | Dimensione | Formato | |
---|---|---|---|
Tesi Mariagiulia Fattorini definitiva.pdf
embargo fino al 21/03/2026
Descrizione: Tesi Mariagiulia Fattorini
Tipologia:
Tesi di dottorato
Dimensione
8.1 MB
Formato
Adobe PDF
|
8.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.